

Verkehrsuntersuchung "Famila" in Lohne

Erläuterungsbericht

Auftraggeber: J. Bünting Beteiligungs AG

Projektnummer: 216213

Datum: 2017-07-07

Aktualisiert: 2020-08-20

INHALTSVERZEICHNIS

1	Auf	gabenstellung	4
2	Ana	alyse	6
	2.1	Verkehrsangebot	6
	2.2	Verkehrsnachfrage - Verkehrsmengen 2016	11
3	Pro	gnose	16
	3.1	Berechnung Prognoseverkehrsmengen	17
	3.2	Prognose Variante 1 – Zufahrt Keetstr.	21
	3.3	Prognose Variante 2 – Zufahrt Keetstr. und Meyerhofstr	24
4	Mai	Snahmenuntersuchung	27
	4.1	Verkehrsablauf	27
	4.2 4.2	KP 01 – Dinklager Str./Keetstr./Vechtaer Str./Bakumer Str	
	4.2.	·	
	4.2.		
	5.1.	1 Rückstaulänge (Keetstraße)	37
	5.2	KP 03 – Keetstr./ Parkplatz Lidl Famila	
	5.2.	1 Linksabbiegehilfe	38
6	Zus	ammenfassung / Fazit	39

Titelbild: Plangrundlage: © OpenStreetMap-Mitwirkende

Bearbeitung:

Dipl. Ing. Manfred Ramm Nina Külker, B.Eng.

IPW INGENIEURPLANUNG GmbH & Co. KG

Ingenieure ◆ Landschaftsarchitekten ◆ Stadtplaner Telefon (0 54 07) 8 80-0 ◆ Telefax (0 54 07) 8 80-88 Marie-Curie-Straße 4a ◆ 49134 Wallenhorst http://www.ingenieure anung.de Beratende Ingenieure – Ingenieurkammer Niedersachsen Qualitätsmanagementsystem TÜV-CERT DIN EN ISO 9001-2008

ABKÜRZUNGEN:

B-Plan = Bebauungsplan

DTV = Durchschnittlicher täglicher Verkehr (in Kfz/24h)

FMZ = Fachmarktzentrum FNP = Flächennutzungsplan

Fg = Fußgänger

FStrG = Bundesfernstraßengesetz

Fzg = Fahrzeuge

GV = Güterverkehr (Lieferwagen, Lkw ab 3,5 t, Traktoren) Kfz = Kraftfahrzeuge (Krad, Pkw, Lieferwagen, Bus, Lkw)

KP = Knotenpunkt

Krad = Kraftrad (z.B. Motorrad, Motorroller, Mofa)

KVP = Kreisverkehrsplatz

L-95 = 95 % - Percentilwert des Rückstaus (in Pkw-Einheiten oder m)

Lfw = Lieferwagen Lkw = Lastkraftwagen

Lz = Lastzug

MIV = Motorisierter Individualverkehr

Modal Split = Verteilung auf die einzelnen Verkehrsarten MIV, Fuß- / Radverkehr, ÖPNV

ÖPNV = Öffentlicher Personennahverkehr

Pkw = Personenkraftwagen

Pkw-E = Pkw-Einheiten

PV = Personenverkehr (Krad, Pkw, Bus)

StVO = Straßenverkehrsordnung

SV = Schwerverkehr (Busse, Lkw > 3,5 t, Lastzüge)

Sp-h = Spitzenstunde

SB = Schalltechnische Beurteilung

VUS = Verkehrsuntersuchung

VZ = Verkehrszeichen

VERWENDETE LITERATUR:

- [1] Forschungsgesellschaft für Straßen- und Verkehrswesen (2015): Handbuch für die Bemessung von Straßenverkehrsanlagen (HBS 2015). Fassung 2015. Köln
- [2] Bosserhoff, Dr. D. (2000): Integration von Verkehrsplanung und räumlicher Planung. In: Hessisches Landesamt für Straßen- und Verkehrswesen (Hrsg.): Schriftenreihe der Hessischen Straßen- und Verkehrsverwaltung, Heft 42. Wiesbaden.
- [3] Ders. (2010): Richtlinie für Lichtsignalanlagen (RiLSA), Köln.
- [4] Ders. (2013): Verkehrsentwicklungsplan (VEP) Lohne 2013

VERWENDETE EDV-PROGRAMME:

AMPEL 6.1

VER BAU 15

KNOBEL 15

KREISEL 8.1

Stufen der Verkehrsqualität gem. HBS 2015

(nach "Handbuch für die Bemessung von Straßenverkehrsanlagen (HBS Ausgabe 2015, FGSV))

Knotenpunkt ohne Lichtsignalanlage, Kreisverkehrsplatz

mittlere Wartezeit [s]	Qualitätsstufe QSV		
≦ 10	A ausgezeichnet		
≦ 20	В	gut	
≦ 30	С	zufriedenstellend	
≦ 45	D	ausreichend	
> 45	Е	mangelhaft	
*	F	ungenügend	

^{*} Die Stufe F ist erreicht, wenn der Sättigungsgrad größer als 1 ist

Knotenpunkt mit Lichtsignalanlage - MIV-

mittlere Wartezeit [s]	Prozentsatz der Durch- fahrten ohne Halt [%]	Qualitätsstufe QSV		
nicht koordiniert	koordiniert			
≦ 20	≥ 95	Α	ausgezeichnet	
≦ 35	≥ 85	В	gut	
≦ 50	≥ 75	С	zufriedenstellend	
≦ 70	≥ 65	D	ausreichend	
> 70	< 65*	E	mangelhaft	
-	-	F	ungenügend	

^{*} Koordinierung unwirksam

Knotenpunkt mit Lichtsignalanlage – ÖV+nmlV-

otonpania nia ziontoignalaniago						
mittle	ere Wartezeit [s]					
Straßen-gebunde- ner ÖPNV	Fahrrad-ver- kehr	Fußgänger- verkehr ¹⁾	Qualitätsstufe QSV			
≦ 5	≦ 30	≦ 30	Α	ausgezeichnet		
≦ 15	≦ 40	≦ 40	В	gut		
≦ 25	≦ 55	≦ 55	С	zufriedenstellend		
≦ 40	≦ 70	≦ 70	D	ausreichend		
≦ 60	≦ 85	≦ 85	E mangelhaft			
> 60	> 85	> 85	F	ungenügend		

¹⁾ Zuschlag von 5s bei Überquerung von mehreren Furten

Aktualisierung vom 20. August 2020

Gegenüber dem im Bearbeitungsstand 07.07.2017 verwendeten Stand der Objektplanung aus dem Juni 2017 ist die Verkaufsfläche des Vorhabens reduziert worden.

Summe	5.650 m ² VKF	5.350 m ² VKF
Diverse Shops	650 m² VKF	650 m ² VKF
Drogeriemarkt	1.000 m ² VKF	700 m ² VKF
Famila	4.000 m ² VKF	4.000 m ² VKF
	Stand 2017	Stand 2020

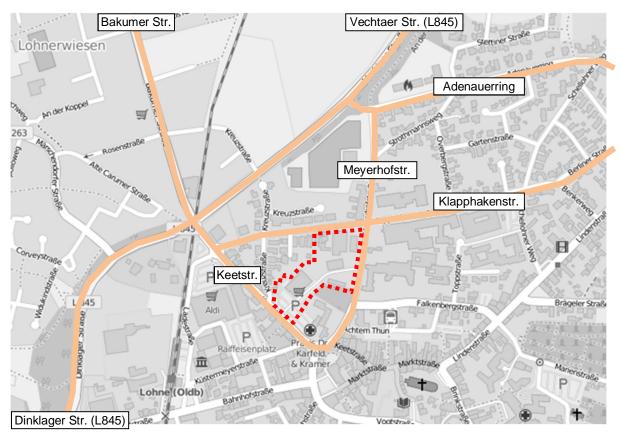
(VKF = Verkaufsfläche)

Die Reduzierung ist relativ gering (rd. 6%). Die mit dem Planungsstand 2017 prognostizierten Verkehrsmengen sind dabei auf der "sicheren Seite".

Eine Neuberechnung / Neubearbeitung erübrigt sich daher.

Die Aussagen mit dem Planungsstand 2017 sind weiterhin gültig.

Wallenhorst, 2020-08-20


IPW INGENIEURPLANUNG GmbH & Co. KG

Manfred Ramm

1 Aufgabenstellung

In der Stadt Lohne ist die Neuansiedlung eines Lebensmittelmarkes (Famila) und eines Drogeriemarktes geplant. Im Plangebiet sind zudem ein Lidl-Markt (in Betrieb) und ein Autohaus (nicht mehr aktiv) vorhanden.

Das Untersuchungsgebiet befindet sich südlich der Vechtaer Str. (L 845), zwischen der Keetstr. und der Meyerhofstr. Das Gebiet ist in der nachfolgenden Abbildung dargestellt:

Abbildung 1: Lage des Untersuchungsgebietes (Plangrundlage: © OpenStreetMap-Mitwirkende)

Vorgehensweise:

1. Analyse

- Bestandsaufnahme vor Ort
- Verkehrsmengenerhebung 2016

Prognose

- Prognoseverkehrsmengen des Planvorhabens

Maßnahmenuntersuchung

- Beurteilung der Verkehrsablaufes
- Maßnahmenvorschlage zur Steigerung der Leistungsfähigkeit einzelner Knotenpunkte

2 Analyse

2.1 Verkehrsangebot

► Anlage 1

Das Bauvorhaben "Famila" ist direkt umgeben von folgenden Straßen:

- Keetstraße
- Meyerhofstraße
- Klapphakenstraße

und wird über den vorhandenen Knotenpunkt Keetstr. / Parkplatz Lidl an das Straßennetz angeschlossen.

Der gesamte Untersuchungsraum wurde am 28.07.2016 im Zuge einer Ortsbesichtigung anhand von Fotos dokumentiert. Eine Übersicht der aktuellen Verkehrsregelung des Untersuchungsgebietes kann **Anlage 1** entnommen werden.

KP 01 - Dinklager Str. / Vechtaer Str. / Keetstr. / Bakumer Str.

Verkehrsregelung: Lichtsignalanlage

Dinklager Str./ Vechtaer Str. / Bakumer Str.: v= 50 km/h

Gemeinsamer Geh- und Radweg (beidseitig)

Keetstr.: v=50 km/h

Gehweg mit Zusatz "Radfahrer frei" (beidseitig)

Blickrichtung Osten

Abbildung 2 Fotodokumentation KP 01

Blickrichtung Norden

KP 02 - Keetstr. / Klapphakenstr. / Ladestr.

Verkehrsregelung: Kreisverkehr

Keetstr. (nördlich): v= 50 km/h

Gemeinsamer Geh- und Radweg (beidseitig)

Keetstr. (südlich): v= 30 km/h

Gehweg mit Zusatz "Radfahrer frei" (beidseitig)

Ladestr.: v= 50 km/h

Gehweg (beidseitig)

Klapphakenstr.: v= 50 km/h

Schutzstreifen für Radfahrer (einseitig)

Blickrichtung Süden

Abbildung 3 Fotodokumentation KP 02

Blickrichtung Westen

KP 03 - Keetstr. / Parkplatz Lidl

Verkehrsrechtlich übergeordnete Straße: Keetstr. v= 30 km/h

Gehweg mit Zusatz "Radfahrer frei" (beidseitig)

Verkehrsrechtlich untergeordnete Straße: Zufahrt Parkplatz Lidl v= 20 km/h

Blickrichtung Süden

Abbildung 4 Fotodokumentation KP 03

Blickrichtung Norden

KP 04 - Keetstr. / Küstermeyerstr.

Verkehrsrechtlich übergeordnete Straße: Keetstr. v= 30 km/h

Gehweg mit Zusatz "Radfahrer frei" (beidseitig)

Verkehrsrechtlich untergeordnete Straße: Küstermeyerstr. v= 30 km/h

Gehweg mit Zusatz "Radfahrer frei" (beidseitig)

Blickrichtung Süden

Abbildung 5 Fotodokumentation KP 04

Blickrichtung Osten

KP 05 - Keetstr. / Neuer Markt

Verkehrsregelung: Lichtsignalanlage

Keetstr.: v= 30 km/h

Gemeinsamer Geh- und Radweg (beidseitig)

Neuer Markt: v= 30 km/h

Gehweg mit Zusatz "Radfahrer frei" (beidseitig)

Blickrichtung Norden

Abbildung 6 Fotodokumentation KP 05

Blickrichtung Westen

KP 06 - Meyerhofstr. / Falkenbergstr.

Verkehrsrechtlich übergeordnete Straße: Meyerhofstr. v= 30 km/h

Gehweg mit Zusatz "Radfahrer frei" (beidseitig)

Verkehrsrechtlich untergeordnete Straße: Falkenbergstr. v= 30 km/h

Gehweg mit Zusatz "Radfahrer frei" (beidseitig)

Blickrichtung Norden

Abbildung 7 Fotodokumentation KP 06

Blickrichtung Westen

KP 07 - Meyerhofstr. / Klapphakenstr.

Verkehrsregelung: Lichtsignalanlage

Meyerhofstr. (nördlich): v= 50 km/h

Getrennter Geh- und Radweg (beidseitig)

Meyerhofstr. (südlich): v= 30 km/h

Gemeinsamer Geh- und Radweg (beidseitig)

Klapphakenstr. (westlich): v= 50 km/h

Schutzstreifen für Radfahrer (einseitig)

Klapphakenstr. (östlich): v= 50 km/h

Getrennter Geh- und Radweg (beidseitig)

Blickrichtung Norden

Abbildung 8 Fotodokumentation KP 07

Blickrichtung Osten

KP 08 - Meyerhofstr. / Adenauerring

Verkehrsrechtlich übergeordnete Straße: Adenauerring v= 50 km/h

Gehweg mit Zusatz "Radfahrer frei" (beidseitig)

Verkehrsrechtlich untergeordnete Straße: Meyerhofstr. v= 50 km/h

Getrennter Geh- und Radweg (beidseitig)

Blickrichtung Norden

Abbildung 9 Fotodokumentation KP 08

Blickrichtung Westen

KP 09 - Vechtaer Str. / Adenauerring

Verkehrsrechtlich übergeordnete Straße: Vechtaer Str. v= 50 km/h

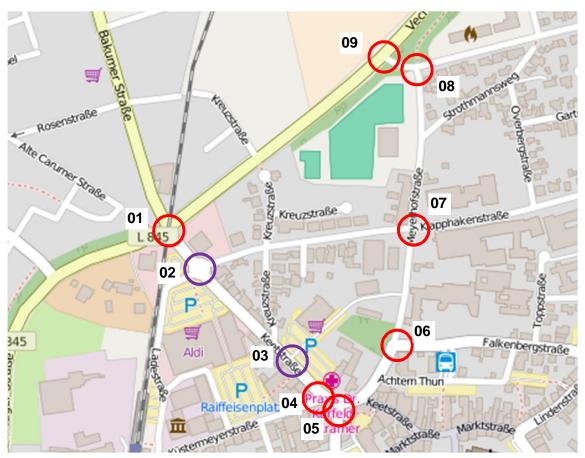
Gemeinsamer Geh- und Radweg (südlich beidseitig / nördlich einseitig)

Verkehrsrechtlich untergeordnete Straße: Adenauerring v= 50 km/h

Gehweg mit Zusatz "Radfahrer frei" (beidseitig)

Blickrichtung Westen

Abbildung 10 Fotodokumentation KP 09


Blickrichtung Norden

2.2 Verkehrsnachfrage - Verkehrsmengen 2016

► Anlage 2

Die Verkehrserhebung wurde anhand von Knotenstromzählungen mit Videoaufzeichnungen am **Dienstag, den 03. Mai 2016** an **9 Knotenpunkten** durchgeführt.

Erfasst wurden alle Kraftfahrzeuge, differenziert nach Pkw und Lkw. Folgende Abbildung zeigt die Lage der Zählstellen.

Abbildung 11: Zählstellenlageplan (Plangrundlage: © OpenStreetMap-Mitwirkende)

<u>Legende</u>

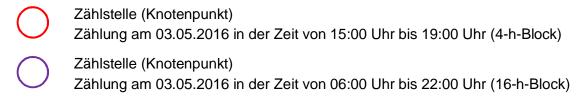


Tabelle 1: Zählstellen

Nr.	Knotenpunkttyp	Straßen	Zählzeitraum
01	Kreuzung (LSA)	Dinklager Str. / Vechtaer Str./ Keetstr. / Bakumer Str.	15:00-19:00 Uhr
02	02 Kreisverkehr Keetstr. / Klapphakenstr. / Ladestr.		06:00-22:00 Uhr
03	Einmündung	Keetstr. / Parkplatz Lidl	06:00-22:00 Uhr
04	Einmündung	Keetstr. / Küstermeyerstr.	15:00-19:00 Uhr
05	Einmündung (LSA)	Keetstr. / Neuer Markt	15:00-19:00 Uhr
06	Einmündung	Meyerhofstr. / Falkenbergstr.	15:00-19:00 Uhr
07	Kreuzung (LSA)	Meyerhofstr. / Klapphakenstr.	15:00-19:00 Uhr
80	Einmündung	Meyerhofstr. / Adenauerring	15:00-19:00 Uhr
09	Einmündung	Vechtaer Str. / Adenauerring	15:00-19:00 Uhr

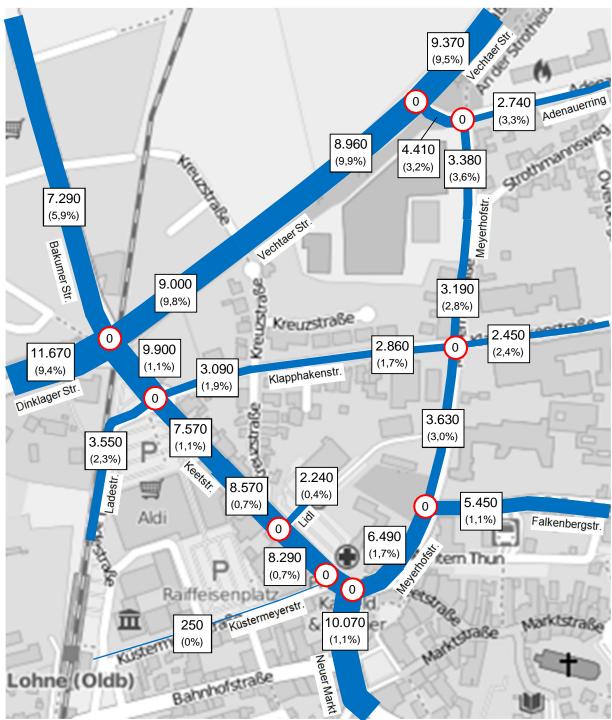
In **Anlage 2** befinden sich die Strombelastungspläne der einzelnen Knotenpunkte.

Die Hochrechnung der Zählung auf den durchschnittlichen täglichen Verkehr (DTV) erfolgte mit dem Verfahren nach HBS 2015.

In **Tabelle 2** wurden die Verkehrsmengen getrennt nach Kfz-Stärke in der Spitzenstunde, durchschnittlicher täglicher Kfz- bzw. Schwerverkehr und der durchschnittliche werktägliche Verkehr angegeben.

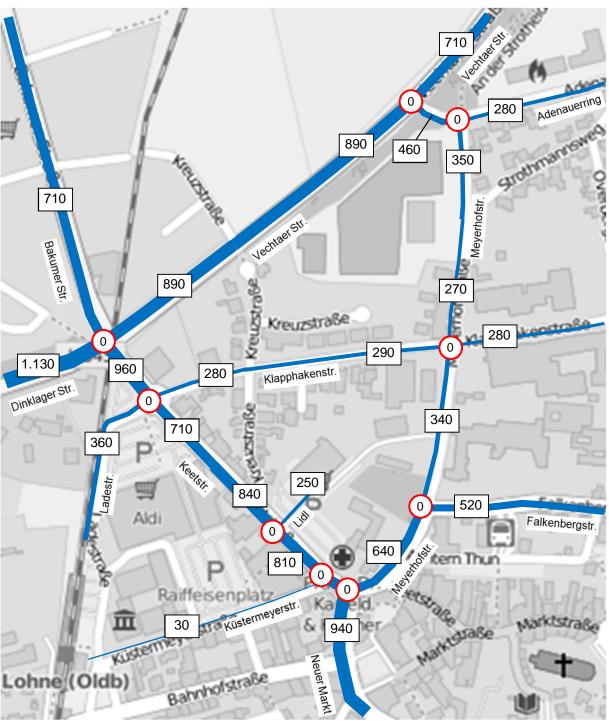
Der gezählte Schwerverkehrsanteil beinhaltet Fahrzeuge mit einer zulässigen Gesamtmasse von 2,8 t.

Die Schwerverkehrsanteile liegen auf allen gezählten Abschnitten, mit Ausnahme der L 849 und der Bakumer Str., im gesamten Untersuchungsraum unter 3,5 %. Im Vergleich mit anderen Städten und Gemeinden derselben Größe ist der Schwerverkehr in Löhne als durchschnittlich einzuordnen. Der Schwerverkehrsanteil auf der L 849 und der Bakumer Str. liegt zwischen 6 bis 10 %.


 Tabelle 2:
 Verkehrsmengen Analyse 2016 (Grundlage: Erhebung Mai 2016)

		Analyse 2016						
KP	Querschnitt	Sph (Kfz/Sph)	DTV (Kfz/24h)	SV*-Anteil (%)	DTVw (Kfz/24h)	SV*-Anteil (%)		
	Dinklager Str.	1.130	11.670	9,4%	12.480	10,3%		
1	Keetstr.	960	9.900	1,1%	10.580	1,1%		
'	Vechtaer Str.	890	9.000	9,8%	9.620	10,6%		
	Bakumer Str.	710	7.290	5,9%	7.790	6,4%		
	Keetstr. (nördl.)	960	9.900	1,1%	10.580	1,1%		
2	Keetstr. (südl.)	710	7.570	1,1%	8.090	1,1%		
	Klapphakenstr.	280	3.090	1,9%	3.300	2,1%		
	Ladestr.	360	3.550	2,3%	3.790	2,4%		
	Keetstr. (nördl.)	840	8.570	0,7%	9.160	0,8%		
3	Keetstr. (südl.)	810	8.290	0,7%	8.860	0,8%		
	Parkplatz LIDL	250	2.240	0,4%	2.390	0,4%		
	Keetstr. (nördl.)	810	8.290	0,7%	8.860	0,8%		
4	Keetstr. (südl.)	780	8.080	0,7%	8.640	0,8%		
	Küstermeyerstr.	30	250	0,0%	260	0,0%		
	Keetstr. (westl.)	780	8.080	0,7%	8.640	0,8%		
5	Keetstr. (östl.)	640	6.870	1,7%	7.340	1,9%		
	Neuer Markt	940	10.070	1,1%	10.770	0,1%		
	Meyerhofstr. (nördl.)	340	3.630	3,0%	3.880	3,1%		
6	Meyerhofstr. (südl.)	610	6.490	1,7%	6.940	1,7%		
	Falkenbergstr.	520	5.540	1,1%	5.920	1,0%		
	Meyerhofstr. (nördl.)	270	3.190	2,8%	3.410	2,9%		
7	Meyerhofstr. (südl.)	330	3.600	2,8%	3.840	2,9%		
'	Klapphakenstr. (westl.)	290	2.860	1,7%	3.050	1,6%		
	Klapphakenstr. (östl.)	280	2.450	2,4%	2.610	2,3%		
	Meyerhofstr.	350	3.380	3,4%	3.610	3,4%		
8	Adenauerring (westl.)	460	4.410	3,2%	4.710	3,4%		
	Adenauerring (östl.)	280	2.740	3,3%	2.920	3,4%		
	Vechtaer Str. (östl.)	710	9.370	9,5%	10.020	10,3%		
9	Vechtaer Str. (westl.)	890	8.960	9,9%	9.580	10,8%		
	Adenauerring	450	4.410	3,2%	4.710	3,4%		

^{*}SV= Schwerverkehr (Lkw, Busse, landwirtschaftliche Fahrzeuge jeweils ab 2,8 t)


In **Abbildung 3 und 4** sind die Analyse-Verkehrsmengen grafisch dargestellt.

Durchschnittliche tägliche Verkehrsmengen (DTV) im Analyse-Zustand [Kfz/24h (SV-Anteil)]

Abbildung 12: Darstellung des DTV (Analyse) [Kfz/24h (SV-Anteil)] (Plangrundlage: © OpenStreetMap-Mitwirkende)

Durchschnittliche tägliche Verkehrsmengen in der Spitzenstunde im Analyse-Zustand [Kfz/Sph]

Abbildung 13: Darstellung der Spitzenstunde (Analyse) [Kfz/Sph] (Plangrundlage: © OpenStreetMap-Mitwirkende)

3 Prognose

► Anlage 3

Das Plangebiet beinhaltet 2 Verbrauchermärkte:

- Frischemarkt "Famila" (Ankernutzung)
- Drogeriemarkt

Dazu kommen weitere kleinflächige Fachmärkte / Shops und ein bereits vorhandener Lebensmitteldiscounter (Lidl).

Für den Lidl wird ein unverändertes Kunden- und Verkehrsaufkommen berücksichtigt.

Das Planvorhaben soll zwischen der Keetstr. und der Meyerhofstr. gebaut werden. Die folgende Abbildung zeigt die Aufteilung der Planfläche und die Lage der Verbrauchermärkte.

Abbildung 14: Aufteilung des Plangebietes

(Plangrundlage: Büro beyer+freitag+zeh "Lageplan Neubau Famila", 07.06.2017)

Der Übersichtslageplan kann Anlage 3 entnommen werden.

In der Prognose-Berechnung werden 2 Varianten bezüglich der zukünftigen Anbindung und der Verteilung im umliegenden Straßennetz untersucht:

Variante 1: Eine Zu- und Ausfahrt,

Anschluss Keetstr. (derzeit Zu- und Ausfahrt Lidl)

Variante 2: Zwei Zu- und Ausfahrten,

Anschluss Keetstr. und Meyerhofstr.

3.1 Berechnung Prognoseverkehrsmengen

Grundsätzliches Vorgehen zur Ermittlung der Prognose-Verkehrsdaten

Schritt 1: Ermittlung der Analysebelastung

(siehe Kapitel 2.2 "Verkehrsmengen 2016")

→ Analyse

Schritt 2: Ermittlung der vorhandenen Verkehrsbelastung durch den vorhandenen Fa-

mila und die Reduzierung der Analyse-Verkehrsbelastung um die vorhandene

Verkehrsbelastung des vorhandenen Famila

→ Analyse ohne Famila

Schritt 3: Berechnung der Prognose-Verkehrsbelastung durch das Bauvorhaben Fa-

mila/ Drogeriemarkt und die Addition auf die Verkehrsbelastung "Analyse ohne

Famila"

→ Prognose

Berechnung der Verkehrsmenge

► Anlage 4

Zur Berechnung des zu erwartenden Verkehrsaufkommens durch die geplante Neuansiedlung der Verbrauchermärkte / Fachmärkte wird das EDV-Programm "Ver_bau" in der neuesten Version (2015) herangezogen, in dem aktuelle Erkenntnisse zu Schlüsselgrößen der Verkehrserzeugung aus umfangreichen empirischen Erhebungen zusammengefasst wurden.

Darüber hinaus wurden eigene Erhebungen von vergleichbaren Standorten von Märkten zur Plausibilitätsprüfung der berechneten Ergebnisse herangezogen.

Die einzelnen Berechnungsblätter zur Verkehrserzeugungsberechnung sind **Anlage 4** zu entnehmen. Folgende Berechnungsschritte und Schlüsselgrößen können zusammengefasst angegeben werden:

<u>Einzelhandel</u>

Kundenaufkommen:

Famila 4.000 m² VKF (Verkaufsfläche)

 Drogeriemarkt
 1.000 m² VKF

 Diverse Shops
 650 m² VKF

 Summe
 5.650 m² VKF

Anmerkung: Die oben aufgelistete Aufteilung der Nutzungen / Sortimente auf die insgesamt

zulässigen 5.650 m² Verkaufsfläche entspricht dem Planungsstand 07. Juni

2017.

Für die Berechnung des täglichen Kundenaufkommens jeder einzelnen Nutzung werden mittlere Werte aus der Quelle [2] genommen.

Dort wird für "Frischemarkt / Vollsortimenter über 2.500 m² VKF" ein Kundenaufkommen von 0,4 bis 0,6 Kunden pro m² Verkaufsfläche angegeben. Für diese Verkehrsuntersuchung werden 0,48 Kunden/m² VKF gewählt.

Das ist gleichzeitig die Nutzung mit dem maximalen Kundenaufkommen, lediglich Lebensmitteldiscounter wie Aldi und Lidl erzeugen höhere Kundenfrequenzen.

Für den "Drogeriemarkt" können es 0,70 bis 1,40 Kunden/m² VKF sein. Für diese Verkehrsuntersuchung wird ein Wert von 0,80 Kunden/m² VKF für den Drogeriemarkt gewählt.

Da die Nutzungen der Shops nicht konkret einer Branche zugeordnet werden kann, werden Mittelwerte verschiedener Frequenzen von z.B. "Shops in Verbrauchermärkten" (0,45-0,55 Kunden/m² VKF), "Zeitungen und Zeitschriften" (1,33 Kunden/m² VKF) oder "Schuhe und Leder" (0,40 Kunden/m² VKF) gebildet. Somit ergibt sich ein Rechenwert für die **Shops von 0,50 Kunden/m² VKF**.

Der Konkurrenzeffekt berücksichtigt, dass praktisch jede neue Nutzung in Konkurrenz zu vorhandenen Nutzungen tritt und daher nicht das volle, mögliche Kundenaufkommen erzeugt. Falls zu einem bestehenden oder einer ebenfalls geplanten Einrichtung (z.B. Lebensmittelmarkt) in räumlicher Nähe ein weiterer Markt der gleichen Branche hinzukommt, kann davon ausgegangen werden, dass das Kundenpotenzial der Branche z.T. bereits ausgeschöpft ist. Daher ist bei der Abschätzung des Aufkommens des hinzukommenden Marktes oder der geplanten Märkte ein Abschlag von mindestens 5 % anzunehmen. Die Höhe des Abschlags hängt vor allem ab von der Größe des Einzugsbereichs bzw. der Anzahl potenzieller Kunden. Für den hier zu untersuchenden Standort werden folgende Konkurrenzeffekte gewählt:

- Famila 15%, aufgrund der direkten Nähe zum vorhandenen Lidl
- Drogeriemarkt 10 %
- **Shops 5%**

Nutzung	Verkaufsfläche/ Nutzfläche	Kunden/m²	Konkurrenz- effekt	Kunden/Tag
Famila	4.000 m²	0,48 VKF	15%	rd. 1.640
Drogeriemarkt	1.000 m ²	0,80 VKF	10%	rd. 730
Diverse Shops	650 m²	0,50 VKF	5%	rd. 310

(Quelle: Ver_Bau 2015 [2] und eigene Berechnung)

Berechnung des Verkehrsaufkommens durch Kunden:

2,0 Wege/Kunden/Tag = 5.358 Wege/Tag

Mit einem MIV-Anteil (motorisierter Individualverkehr) von 80 % (die restlichen 20% werden mit dem Bus, Fahrrad oder zu Fuß abgewickelt) und einer Pkw-Besetzung von 1,2 Personen/Pkw ergeben sich rd. 3.535 Pkw-Fahrten/Tag.

Bei der Berechnung des Kundenaufkommens mehrerer benachbarter Einrichtungen an einem Standort ist zudem noch der **Verbundeffekt** zu beachten.

Der Verbundeffekt gibt den Anteil der Kunden an, die mit einem Besuch nicht nur eine, sondern mehrere Einrichtungen am Standort aufsuchen. Je nach Lage und Art der Einrichtungen kann der Verbundeffekt Werte zwischen 5 % und 60 % erreichen.

Für den hier zu untersuchenden Standort werden Verbundeffekte von:10% (Ankernutzungen) bis 50% für die ergänzenden Fachmärkte / Shops gewählt.

Nutzung	Kunden/Tag	Pkw-Fahrten/Tag	Verbundeffekt	Tagesbelastung
Famila	rd. 1.640	rd. 2.185 Fahrten	10% (Ankern.)	rd. 1.970 Kfz/Tag
Drogeriemarkt	rd. 730	rd. 935 Fahrten	30%	rd. 680 Kfz/Tag
Diverse Shops	rd. 310	rd. 415 Fahrten	50%	rd. 205 Kfz/Tag

(Quelle: Ver_Bau 2015 [2] und eigene Berechnung)

Insgesamt resultiert daraus ein Kundenaufkommen von 2.680 Kunden pro Tag.

-> Verkehrsaufkommen durch Kunden: rd. 2.855 Pkw/ Tag

Berechnung des Verkehrsaufkommens durch Beschäftigte:

104 Beschäftigte

Anwesenheit: 75 % (= rd. 75 Beschäftigte/Tag) 2,1 Wege/Beschäftigtem/Tag = 158 Wege/Tag

MIV-Anteil: 60 %; Pkw-Besetzung 1,1 Personen/Pkw = 86 Pkw-Fahrten/Tag

-> Verkehrsaufkommen durch Beschäftigte: rd. 85 Pkw/ Tag

Berechnung des Verkehrsaufkommens durch Lieferverkehr:

Es kann von durchschnittlich 0,63 Liefer-Fahrten/100m² Verkaufsfläche für alle Einzelhändler (eingeschlossen Shops) ausgegangen werden. Enthalten sind darin <u>alle</u> gewerblichen Verkehre, inbegriffen Post, Müllabfuhr, usw.

Demnach beträgt das Liefer-Verkehrsaufkommen (Lieferwagen bis Lkw mit Auflieger) 28 Liefer-Fahrten/Tag

-> Verkehrsaufkommen durch Lieferverkehr: rd. 30 Lieferfahrzeuge/ Tag

Gesamtverkehrsaufkommen:

Kunden:
Beschäftigte:

Insgesamt (inklusive vorhandenem Lidl) wird das Plangebiet 5.210 Kfz/Tag (davon 2.240 Kfz/Tag Lidl) erzeugen.

In der nachmittäglichen Spitzenstunde (16:15 bis 17:15 Uhr) ist in der Summe mit folgendem Verkehrsaufkommen zu rechnen:

Quellverkehr:256 Kfz/SphZielverkehr:307 Kfz/SphSumme:563 Kfz/Sph

Neuverkehrsaufkommen:

Bei der Prognose des Verkehrsaufkommens ist noch ein weiterer Faktor zu berücksichtigen:

Mitnahmeeffekt

Bei Fahrten zu integriert gelegenen Standorten mit direkter Anbindung an Hauptverkehrsstraßen kann nach empirischen Studien [2] davon ausgegangen werden, dass nur ein Teil des Verkehrsaufkommens als Neuverkehr auf der Straße auftritt. Ein Teil der Kunden wird den Einkauf im Rahmen eines Zwischenstopps auf einer ohnehin durchgeführten Fahrt erledigen, z. B. auf der Fahrt von der Arbeit nach Hause.

In der Stadt Lohne ist davon auszugehen, dass bereits 25% der Kunden die umliegenden Straßen nutzen und somit keinen neuen Verkehr erzeugen.

Dieser Mitnahmeeffekt wird nur auf dem Anteil des Neuverkehr Famlia/ DM, nicht aber auf dem IST-Verkehr Lidl angewendet.

Die zwei Anschluss-Varianten des Vorhabens sollen über die Keetstr. oder über die Keetstr. und die Meyerhofstr. erfolgen. Für die Verteilung des Verkehrs im umliegenden Straßennetz wird angenommen, dass sich in beiden Fällen der Verkehr wie folgt orientieren wird:

- rd. 10% in/aus Richtung Dinklager Str.
- rd. 5% in/aus Richtung Vechtaer Str.
- rd. 10 % in/aus Richtung Bakumer Str.
- rd. 5 % in/aus Richtung Ladestr.
- rd. 10 % in/aus Richtung Adeneuerring
- rd. 10 % in/aus Richtung Klapphakenstr.
- rd. 15 % in/aus Richtung Falkenbergstr.
- rd. 35 % in/aus Richtung Neuer Markt

3.2 Prognose Variante 1 – Zufahrt Keetstr.

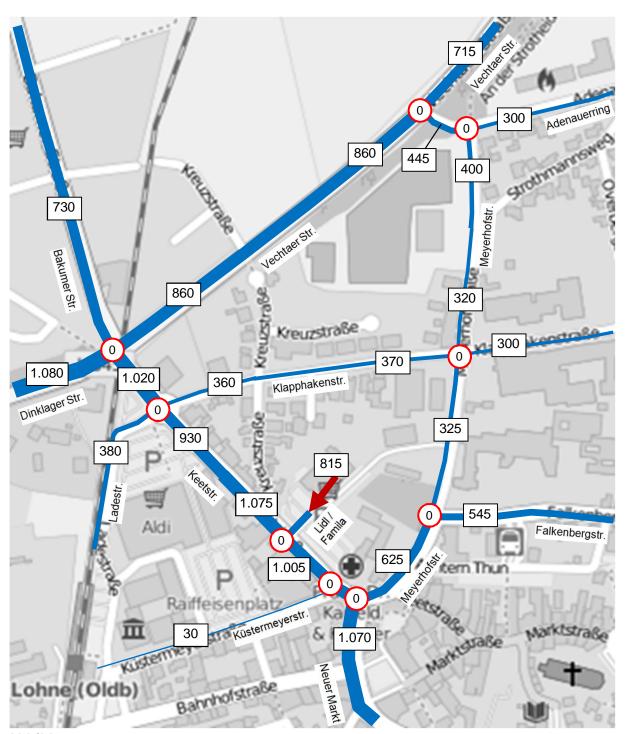
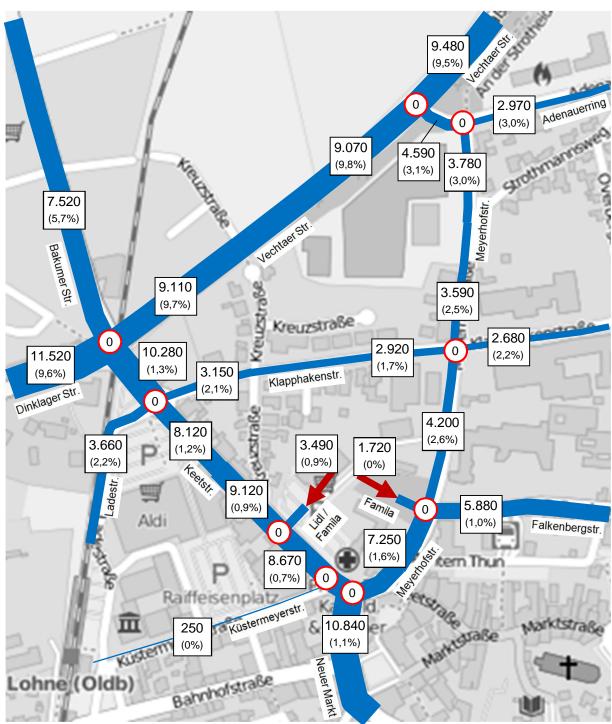

Durchschnittliche tägliche Verkehrsmengen (DTV) im Prognose-Zustand (Variante 1) [Kfz/24h (SV-Anteil)]

Abbildung 15: Darstellung des DTV (Prognose – Variante 1) [Kfz/24h (SV-Anteil)] (Plangrundlage: © OpenStreetMap-Mitwirkende)

Durchschnittliche tägliche Verkehrsmengen in der Spitzenstunde Prognose-Zustand (Variante 1)

[Kfz/Sph]

Abbildung 16: Darstellung der Spitzenstunde (Prognose - Variante 1) [Kfz/Sph] (Plangrundlage: © OpenStreetMap-Mitwirkende)


Tabelle 3: Verkehrsmengen Prognose – Variante 1 (Eine Zu- und Ausfahrt)

		Ana	lyse 2016	Prognos	se – Variante 1	Ver-ände-
KP	Querschnitt	Sph (Kfz/Sph)	DTV (Kfz/24h (SV-Anteil %))	Sph (Kfz/Sph)	DTV (Kfz/24h (SV-Anteil %))	rung (DTV) (%)
	Dinklager Str.	1.130	11.670 (9,4%)	1.080	11.520 (9,6%)	- 1,3 %
1	Keetstr.	960	9.900 (1,1%)	1.020	10.395 (1,3%)	+ 5,0 %
1	Vechtaer Str.	890	9.000 (9,8%)	860	9.035 (9,8%)	+ 0,4 %
	Bakumer Str.	710	7.290 (5,9%)	730	7.520 (5,7%)	+ 3,2 %
	Keetstr. (nördl.)	960	9.900 (1,1%)	1.020	10.395 (1,3%)	+ 5,0 %
2	Keetstr. (südl.)	710	7.570 (1,1%)	930	8.800 (1,2%)	+ 16,2 %
	Klapphakenstr.	280	3.090 (1,9%)	360	3.715 (1,7%)	+ 20,2 %
	Ladestr.	360	3.550 (2,3%)	380	3.660 (2,2%)	+ 3,1 %
	Keetstr. (nördl.)	840	8.570 (0,7%)	1.075	9.800 (0,8%)	+ 14,4 %
3	Keetstr. (südl.)	810	8.290 (0,7%)	1.005	9.310 (0,7%)	+ 12,3 %
	Parkplatz Lidl/Famila	250	2.240 (0,4%)	815	5.210 (0,6%)	+ 132,6 %
	Keetstr. (nördl.)	810	8.290 (0,7%)	1.005	9.310 (0,7%)	+ 12,3 %
4	Keetstr. (südl.)	780	8.080 (0,7%)	975	9.100 (0,7%)	+ 12,6 %
	Küstermeyerstr.	30	250 (0,0%)	30	250 (0,0%)	± 0,0 %
	Keetstr. (westl.)	780	8.080 (0,7%)	975	9.100 (0,7%)	+ 12,6 %
5	Keetstr. (östl.)	640	6.870 (1,7%)	655	7.120 (1,6%)	+ 3,6 %
	Neuer Markt	940	10.070 (1,1%)	1.070	10.840 (1,1%)	+ 7,6 %
	Meyerhofstr. (nördl.)	340	3.630 (3,0%)	325	3.720 (2,9%)	+ 2,5 %
6	Meyerhofstr. (südl.)	610	6.490 (1,7%)	625	6.740 (1,6%)	+ 3,9 %
	Falkenbergstr.	520	5.540 (1,1%)	545	5.880 (1,0%)	+ 6,1 %
	Meyerhofstr. (nördl.)	270	3.190 (2,8%)	320	3.495 (2,6%)	+ 9,6 %
7	Meyerhofstr. (südl.)	330	3.600 (2,8%)	315	3.690 (2,7%)	+ 2,5 %
'	Klapphakenstr.(westl)	290	2.860 (1,7%)	370	3.485 (1,4%)	+ 21,9 %
	Klapphakenstr. (östl.)	280	2.450 (2,4%)	300	2.680 (2,2%)	+ 9,4 %
	Meyerhofstr.	350	3.380 (3,4%)	400	3.685 (3,1%)	+ 9,0 %
8	Adenauerring (westl.)	460	4.410 (3,2%)	445	4.485 (3,1%)	+ 1,7 %
	Adenauerring (östl.)	280	2.740 (3,3%)	300	2.970 (3,0%)	+ 8,4 %
	Vechtaer Str. (östl.)	710	9.370 (9,5%)	715	9.480 (9,5%)	+ 1,2 %
9	Vechtaer Str. (westl.)	890	8.960 (9,9%)	860	8.995 (9,9%)	+ 0,4 %
	Adenauerring	450	4.410 (3,2%)	435	4.485 (3,1%)	+ 1,7 %

^{*}SV= Schwerverkehr (Lkw, Busse, landwirtschaftliche Fahrzeuge jeweils ab 2,8 t)

3.3 Prognose Variante 2 – Zufahrt Keetstr. und Meyerhofstr.

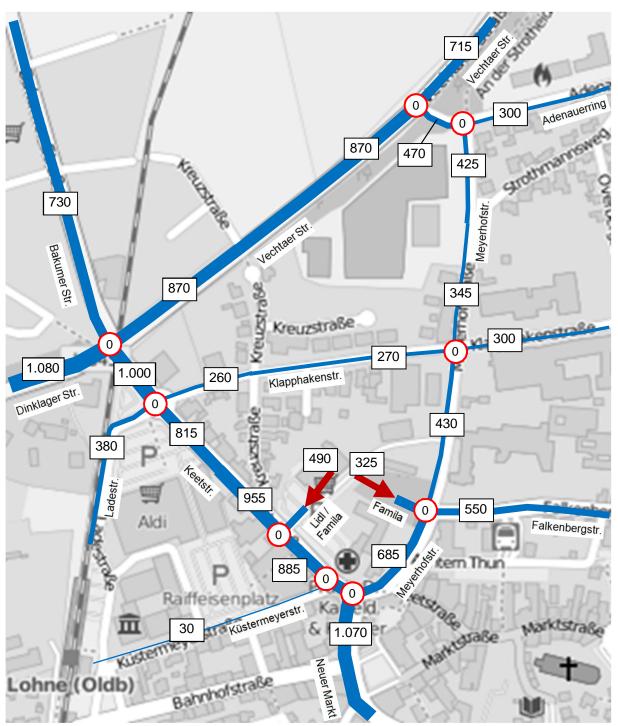

Durchschnittliche tägliche Verkehrsmengen (DTV) im Prognose-Zustand (Variante 2) [Kfz/24h (SV-Anteil)]

Abbildung 17: Darstellung des DTV (Prognose – Variante 2) [Kfz/24h (SV-Anteil)] (Plangrundlage: © OpenStreetMap-Mitwirkende)

Durchschnittliche tägliche Verkehrsmengen in der Spitzenstunde Prognose-Zustand (Variante 2)

[Kfz/Sph]

Abbildung 18: Darstellung der Spitzenstunde (Prognose - Variante 2) [Kfz/Sph] (Plangrundlage: © OpenStreetMap-Mitwirkende)

Tabelle 4: Verkehrsmengen Prognose – Variante 2 (Zwei Zu- und Ausfahrten)

		Ana	lyse 2016	Prognose – Variante 2		Ver-ände-
КР	Querschnitt	Sph (Kfz/Sph)	DTV (Kfz/24h (SV-Anteil %))	Sph (Kfz/Sph)	DTV (Kfz/24h (SV-Anteil %))	rung (DTV) (%)
	Dinklager Str.	1.130	11.670 (9,4%)	1.080	11.520 (9,6%)	- 1,3 %
1	Keetstr.	960	9.900 (1,1%)	1.000	10.280 (1,3%)	+ 3,8 %
'	Vechtaer Str.	890	9.000 (9,8%)	870	9.110 (9,7%)	+ 1,2 %
	Bakumer Str.	710	7.290 (5,9%)	730	7.520 (5,7%)	+ 3,2 %
	Keetstr. (nördl.)	960	9.900 (1,1%)	1.000	10.180 (1,3%)	+ 2,8 %
2	Keetstr. (südl.)	710	7.570 (1,1%)	815	8.120 (1,2%)	+ 7,3 %
2	Klapphakenstr.	280	3.090 (1,9%)	260	3.150 (2,1%)	+ 1,9 %
	Ladestr.	360	3.550 (2,3%)	380	3.660 (2,2%)	+ 3,1 %
	Keetstr. (nördl.)	840	8.570 (0,7%)	955	9.120 (0,9%)	+ 6,4 %
3	Keetstr. (südl.)	810	8.290 (0,7%)	885	8.670 (0,7%)	+ 4,6 %
	Parkpl. Lidl/Famila(1)	250	2.240 (0,4%)	490	3.490 (0,9%)	+ 55,8 %
	Keetstr. (nördl.)	810	8.290 (0,7%)	885	8.670 (0,7%)	+ 4,6 %
4	Keetstr. (südl.)	780	8.080 (0,7%)	855	8.460 (0,7%)	+ 4,7 %
	Küstermeyerstr.	30	250 (0,0%)	30	250 (0,0%)	± 0,0 %
	Keetstr. (westl.)	780	8.080 (0,7%)	855	8.460 (0,7%)	+ 4,7 %
5	Keetstr. (östl.)	640	6.870 (1,7%)	685	7.250 (1,6%)	+ 5,5 %
	Neuer Markt	940	10.070 (1,1%)	1.070	10.840 (1,1%)	+ 7,6 %
	Meyerhofstr. (nördl.)	340	3.630 (3,0%)	430	4.200 (2,6%)	+ 15,7 %
6	Meyerhofstr. (südl.)	610	6.490 (1,7%)	655	6.870 (1,6%)	+ 5,9 %
	Falkenbergstr.	520	5.540 (1,1%)	550	5.880 (1,0%)	+ 6,1 %
	Parkpl. Famila (2)	-	-	325	1.720 (0,0%)	-
	Meyerhofstr. (nördl.)	270	3.190 (2,8%)	345	3.590 (2,5%)	+ 12,5 %
7	Meyerhofstr. (südl.)	330	3.600 (2,8%)	405	4.170 (2,4%)	+ 15,8 %
'	Klapphakenstr.(westl)	290	2.860 (1,7%)	270	2.920 (1,7%)	+ 2,1 %
	Klapphakenstr. (östl.)	280	2.450 (2,4%)	300	2.680 (2,2%)	+ 9,4 %
	Meyerhofstr.	350	3.380 (3,4%)	425	3.780 (3,0%)	+ 11,8 %
8	Adenauerring (westl.)	460	4.410 (3,2%)	470	4.590 (3,1%)	+ 4,1 %
	Adenauerring (östl.)	280	2.740 (3,3%)	300	2.970 (3,0%)	+ 8,4 %
	Vechtaer Str. (östl.)	710	9.370 (9,5%)	715	9.480 (9,5%)	+ 1,2 %
9	Vechtaer Str. (westl.)	890	8.960 (9,9%)	870	9.070 (9,8%)	+ 1,2 %
	Adenauerring	450	4.410 (3,2%)	460	4.590 (3,1%)	+ 4,1 %

^{*}SV= Schwerverkehr (Lkw, Busse, landwirtschaftliche Fahrzeuge jeweils ab 2,8 t)

4 Maßnahmenuntersuchung

In der Maßnahmenuntersuchung werden alle Knotenpunkte des Untersuchungsgebietes hinsichtlich der jeweiligen Verkehrsqualität bewertet.

Für potenziell kritische Knotenpunkte, die durch den neu entstehenden Verkehr Defizite aufweisen, werden Vorschläge zur Optimierung dargestellt.

4.1 Verkehrsablauf

► Anlage 5

Die Berechnungen der Verkehrsqualität der einzelnen Knotenpunkte erfolgte auf Grundlage der aktuellen und den prognostizierten Verkehrsmengen gem. HBS 2015 mit den EDV-Programmen KNOBEL 7, KREISEL 8 und AMPEL 6.

Es werden die Berechnungsergebnisse getrennt nach

- 1. Analyse
- 2. **Prognose Variante 1 =** Eine Zu-/ Ausfahrt

Anschluss Keetstr. (derzeit Zu-/Ausfahrt Lidl)

3. **Prognose Variante 2 =** Zwei Zu-/Ausfahrten

Anschluss Keetstr. und Meyerhofstr.

betrachtet, um ein detailliertes Resultat der beiden Varianten zu erhalten und dieses mit dem vorhandenen Verkehrsfluss zu vergleichen.

Im Folgenden werden die Ergebnisse der Verkehrsqualitätsberechnungen zusammengefasst. Die Berechnungsblätter können **Anlage 5** entnommen werden.

Tabelle 5: Verkehrsqualitäten Prognose-Zustand (Berechnungsergebnisse KNOBEL)

Knotenpunkt 01 – Dinklager Str. / Keetstr. / Vechtaer Str. / Bakumer Str.

(Verkehrsregelung: Lichtsignalanlage)

Analyse: max. mittlere Wartezeiten = 45,8 s/Kfz

(für den Geradeaus- und Rechtsabbiegestrom der

Bakumer Str.

Qualitätsstufe (QSV) C (=zufriedenstellend

Variante 1: max. mittlere Wartezeiten = 51,9 s/Kfz

(für den Geradeaus- und Rechtsabbiegestrom der

Bakumer Str.)

Variante 2: max. mittlere Wartezeiten = 43,2 s/Kfz

(für den Geradeaus- und Rechtsabbiegestrom der

Bakumer Str.)

Variante 1: Qualitätsstufe (QSV) D (=ausreichend)

Variante 2: Qualitätsstufe (QSV) C (=zufriedenstellend)

<u>Knotenpunkt 02 – Keetstr. / Ladestr. / Klapphakenstr. (Verkehrsregelung: Kreisverkehr)</u>

Analyse: max. mittlere Wartezeiten = 5,7 s/Kfz

(für den Kreisverkehrsarm Ladestr.)

Qualitätsstufe (QSV) A (=ausgezeichnet)

Variante 1: max. mittlere Wartezeiten = 6,7 s/Kfz

(für den Kreisverkehrsarm Ladestr.)

Variante 2: max. mittlere Wartezeiten = 6,1 s/Kfz

(für den Kreisverkehrsarm Ladestr.)

Beide Varianten: Qualitätsstufe (QSV) A (=ausgezeichnet)

<u>Knotenpunkt 03 – Keetstr. / Parkplatz Lidl.</u> (Verkehrsregelung: Vorfahrtsstraße)

Analyse: max. mittlere Wartezeiten = 13,9 s/Kfz

(für den Linksabbieger Parkplatz Lidl)

Qualitätsstufe (QSV) B (=gut)

Variante 1: max. mittlere Wartezeiten = 36,5 s/Kfz

(für den Mischstrom Ausfahrt Parkplatz Lidl)

Variante 2: max. mittlere Wartezeiten = 10,6 s/Kfz

(für den Linksabbieger Parkplatz Lidl)

Variante 1: Qualitätsstufe (QSV) D (=ausreichend)

Variante 2: Qualitätsstufe (QSV) B (=gut)

Knotenpunkt 04 – Keetstr. / Küstermeyerstr. (Verkehrsregelung: Vorfahrtsstraße)

Analyse: max. mittlere Wartezeiten = 4,6 s/Kfz

(für den Linksabbieger Keetstr. südl.)

Qualitätsstufe (QSV) A (=ausgezeichnet)

Variante 1: max. mittlere Wartezeiten = 4,7 s/Kfz

(für den Linksabbieger Keetstr. südl.)

Variante 2: max. mittlere Wartezeiten = 4,5 s/Kfz

(für den Linksabbieger Keetstr. südl.)

Beide Varianten: Qualitätsstufe (QSV) A (=ausgezeichnet)

Knotenpunkt 05 – Keetstr. / Neuer Markt. (Verkehrsregelung: Lichtsignalanlage)

Analyse: max. mittlere Wartezeiten = 38,8 s/Kfz

(für den Rechtsabbieger Keetstr. westl.)

Qualitätsstufe (QSV) C (=zufriedenstellend)

Variante 1: max. mittlere Wartezeiten = 41,8 s/Kfz

(für den Rechtsabbieger Keetstr. westl.)

Variante 2: max. mittlere Wartezeiten = 38,8 s/Kfz

(für den Rechtsabbieger Keetstr. westl.)

Beide Varianten: Qualitätsstufe (QSV) C (=zufriedenstellend)

Knotenpunkt 06 – Meyerhofstr. / Falkenbergstr. / (Parkplatz Famila)

(Verkehrsregelung: Vorfahrtsstraße)

Analyse: max. mittlere Wartezeiten = 12,0 s/Kfz

(für den Linksabbieger Falkenbergstr.)

Qualitätsstufe (QSV) B (=gut)

Variante 1: max. mittlere Wartezeiten = 12,6 s/Kfz

(für den Linksabbieger Falkenbergstr.)

Variante 2: max. mittlere Wartezeiten = 16,4 s/Kfz

(für den Linksabbieger Falkenbergstr.)

Beide Varianten: Qualitätsstufe (QSV) B (=gut)

<u>Knotenpunkt 07 – Meyerhofstr. / Klapphakenstr. (Verkehrsregelung: Lichtsignalanlage)</u>

Analyse: max. mittlere Wartezeiten = 24,9 s/Kfz

(für den Geradeaus- und Rechtsabbiegestrom der

Meyerhofstr. südl-)

Qualitätsstufe (QSV) B (=gut)

Variante 1: max. mittlere Wartezeiten = 24,9 s/Kfz

(für die Klapphakenstr. östl.)

Variante 2: max. mittlere Wartezeiten = 25,7 s/Kfz

(für die Klapphakenstr. östl.)

Beide Varianten: Qualitätsstufe (QSV) B (=gut)

Knotenpunkt 08 – Meyerhofstr. / Adenauerring (Verkehrsregelung: Vorfahrtsstraße)

Analyse: max. mittlere Wartezeiten = 6,2 s/Kfz

(für den Linksabbieger Meyerhofstr.)

Qualitätsstufe (QSV) A (=ausgezeichnet)

Variante 1: max. mittlere Wartezeiten = 6,5 s/Kfz

(für den Linksabbieger Meyerhofstr.)

Variante 2: max. mittlere Wartezeiten = 6,7 s/Kfz

(für den Linksabbieger Meyerhofstr.)

Beide Varianten: Qualitätsstufe (QSV) A (=ausgezeichnet)

<u>Knotenpunkt 09 – Vechtaerstr. / Adenauerring</u> (Verkehrsregelung: Vorfahrtsstraße)

Analyse: max. mittlere Wartezeiten = 16,4 s/Kfz

(für den Linksabbieger Adenauerring)

Qualitätsstufe (QSV) B (=gut)

Variante 1: max. mittlere Wartezeiten = 17,0 s/Kfz

(für den Linksabbieger Adenauerring)

Variante 2: max. mittlere Wartezeiten = 18,1 s/Kfz

(für den Linksabbieger Adenauerring)

Beide Varianten: Qualitätsstufe (QSV) B (=gut)

Zusammenfassung:

Der Knotenpunkt 01 (Dinklager Str./ Keetstr./ Vechtaer Str./ Bakumer Str.) ist_hinsichtlich des Verkehrsablaufes, bzw. der Verkehrsqualität in beiden Prognose-Varianten als weitestgehend unproblematisch einzustufen. Allerdings erreicht die Keetstr. bereits in der Analyse eine Rückstaulänge von 59m. Der prognostizierte Mehrverkehr ist vor allem auf dem Linksabbiegestrom der Keetstr. aufgrund steigender Rückstaulängen als kritisch zu bewerten.

Aus verkehrstechnischer Sicht könnte durch eine Optimierung der Programmierung der Lichtsignalanlagen eine verbesserte Verkehrsqualität erreicht werden.

Zudem könnte es im Bereich des Knotenpunktes Keetstr./ Parkplatz Lidl primär in der Variante 1 (eine Zu-/ Ausfahrt) zu leichten Einschränkungen in der Ausfahrt kommen. Die Ausfahrt ist in der Variante 1 lediglich mit "ausreichend" bewertet. Dies könnte bei einzelnen Pkw-Fahrern zu einer riskanten Fahrweise führen und ein deutlich erhöhtes Unfallrisiko darstellen.

In **Abbildung 19** sind die Ergebnisse der Qualitätsberechnung zur Verdeutlichung grafisch dargestellt.

Übersicht der Verkehrsqualitäten (QSV) – Spitzenstunde nachmittags –

Analyse (An) = Zählung 2016

Prognose Variante 1 (Var1) = Eine Zu-/Ausfahrt Parkplatz Lidl / Famila

Prognose Variante 2 (Var2) = Zwei Zu-/Ausfahrten Parkplatz Lidl / Famila

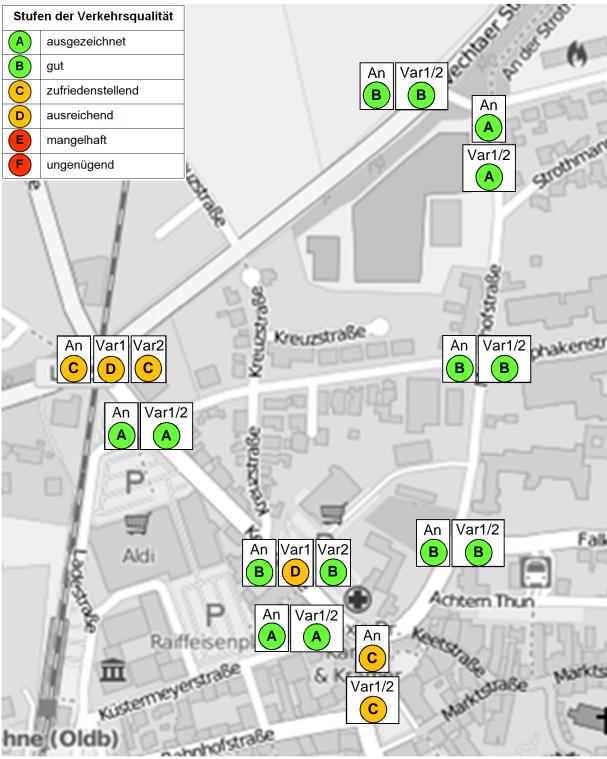
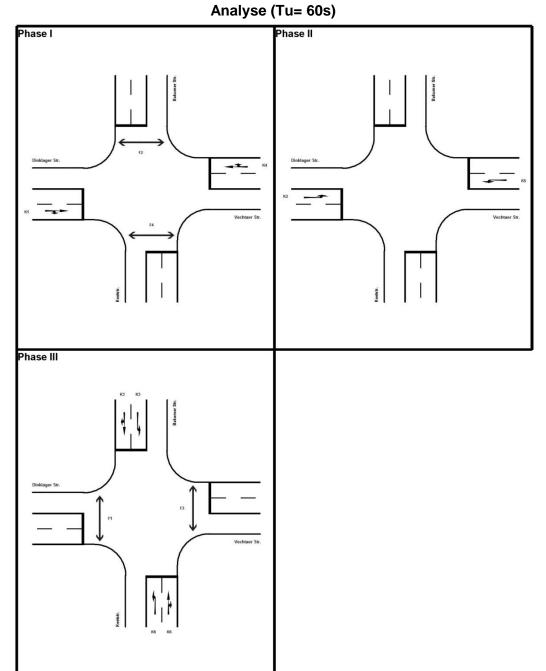


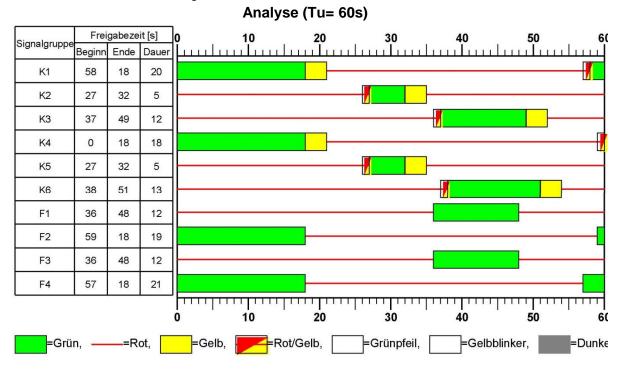
Abbildung 19: Darstellung der Verkehrsqualitäten in der Spitzenstunde (Plangrundlage: © OpenStreetMap-Mitwirkende)

4.2 KP 01 – Dinklager Str./Keetstr./Vechtaer Str./Bakumer Str.


4.2.1 Optimierung LSA

► Anlage 6.1

Knotenpunkt 01 - Dinklager Str./ Keetstr./ Vechtaer Str./ Bakumer Str.


Phaseneinteilung in der Spitzenstunde nachmittags im Analyse-Zustand

KP Dinklager Str./ Keetstr./ Vechtaer Str./ Bakumer Str.

Signalzeitenplan in der Spitzenstunde nachmittags

KP Dinklager Str./ Keetstr./ Vechtaer Str./ Bakumer Str.

Verkehrsablauf – **Analyse** (nach HBS)

maximale mittlere Wartezeiten = 34,6 s/Kfz (Signalgruppe K1, Ströme 2 / 3)

45,8 s/Kfz (Signalgruppe K3, Ströme 11 / 12)

34,9 s/Kfz (Signalgruppe K6, Ströme 4)

31,2 s/Kfz (Signalgruppe K6, Ströme 5 / 6)

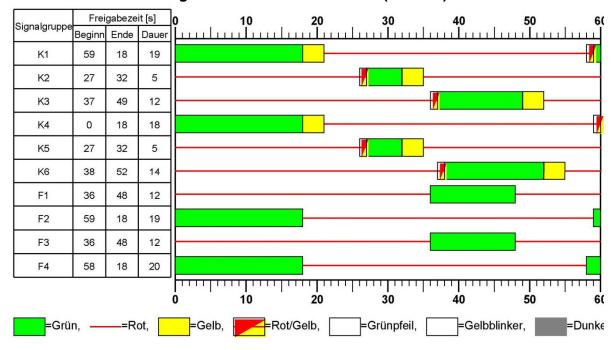
Qualitätsstufe (QSV) C (=zufriedenstellend)

Beurteilung: Die derzeitigen Verkehrsmengen können ohne Beeinträchtigung vom Knotenpunkt aufgenommen werden. Die aktuelle maximale Wartezeit für den Geradeaus- und Rechtsabbiegestrom der Bakumer Str. liegt bei rd. 46 s/Kfz. Dies entspricht einer zufriedenstellenden Verkehrsqualität (QSV = C).

> In beiden Prognose-Varianten erhöht sich die Rückstaulänge der Keetstr. (K6) um rd. 6m (1 Pkw-Einheit).

Empfehlung: Um eine verbesserte Verkehrssituation in der Keetstr. und eine reduzierte Rückstaulänge zu erreichen, könnte ohne Veränderung der Umlaufzeit die Grünphase der Signalgruppe K6 um 1 Sekunde verlängert werden.

> Parallel dazu würde die Signalgruppe K1 um 1 Sekunde reduziert. Somit ergibt sich ein neuer Signalzeitenplan (siehe 4.2.2).


> Des Weiteren können die Linksabbieger der Bakumer Str. und Keetstr. unabhängig in einer eigenen Phase signalisiert werden (siehe 4.2.3).

4.2.2 Optimierter Signalzeitenplan – Reduzierung der Grünzeit (K1)

Optimierter Signalzeitenplan (Reduzierung Grünzeit K1) in der Spitzenstunde nachmittags

KP Dinklager Str./ Keetstr./ Vechtaer Str./ Bakumer Str.

Prognose Variante 1 / Variante 2 (Tu= 60s)

Optimierter Verkehrsablauf – Prognose Variante 1 (nach HBS)

maximale mittlere Wartezeiten = 51,2 s/Kfz (Signalgruppe K1, Ströme 2 / 3)

51,9 s/Kfz (Signalgruppe K3, Ströme 11 / 12)

34,2 s/Kfz (Signalgruppe K6, Ströme 4)

30,1 s/Kfz (Signalgruppe K6, Ströme 5 / 6)

Qualitätsstufe (QSV) D (=ausreichend)

Optimierter Verkehrsablauf – **Prognose Variante 2** (nach HBS)

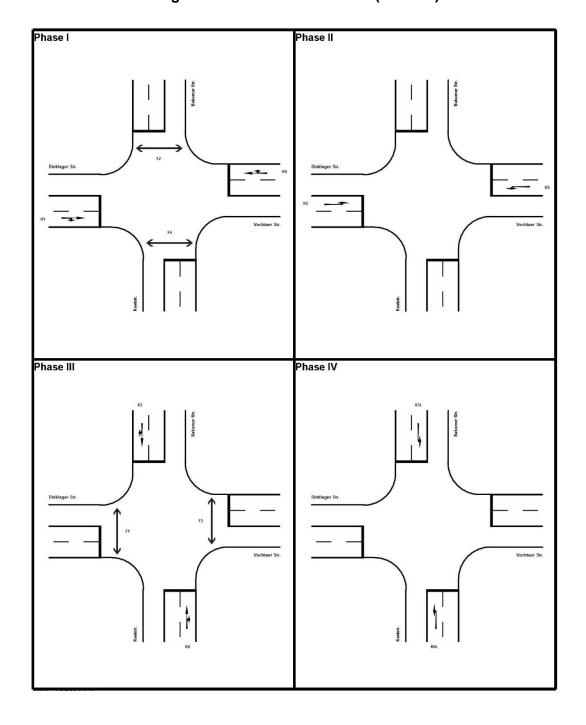
maximale mittlere Wartezeiten = 51,4 s/Kfz (Signalgruppe K1, Ströme 2 / 3)

51,4 s/Kfz (Signalgruppe K3, Ströme 11 / 12)

33,0 s/Kfz (Signalgruppe K6, Ströme 4)

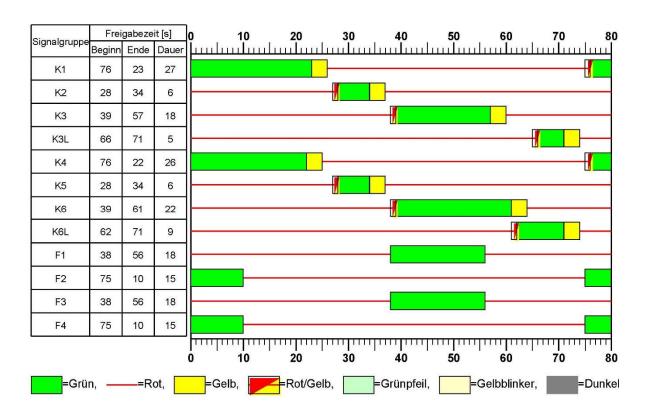
29,7 s/Kfz (Signalgruppe K6, Ströme 5 / 6)

Qualitätsstufe (QSV) D (=ausreichend)


→ In beiden Varianten wird eine ausreichende Verkehrsqualität erreicht. Die erhöhten Verkehrsmengen würden, gegenüber der Analyse, lediglich eine Verlängerung des Rückstaus in der Keetstr. um rd. 3m bewirken.

4.2.3 Optimierter Signalzeitenplan – Separate Linksabbiegephase (K3, K6)

Optimierte Phaseneinteilung (LA-Phase K3, K6) in der Spitzenstunde nachmittags


KP Dinklager Str./ Keetstr./ Vechtaer Str./ Bakumer Str.

Prognose Variante 1 / Variante 2 (Tu= 80s)

Optimierter Signalzeitenplan (LA-Phase K3, K6) in der Spitzenstunde nachmittags

KP Dinklager Str./ Keetstr./ Vechtaer Str./ Bakumer Str. Prognose Variante 1 / Variante 2 (Tu= 80s)

Optimierter Verkehrsablauf (mit Linksabbiegephase) – Prognose Variante 1 (nach HBS)

maximale mittlere Wartezeiten =

59,7 s/Kfz (Signalgruppe K1, Ströme 2 / 3)

44,5 s/Kfz (Signalgruppe K3, Ströme 11 / 12)

51,3 s/Kfz (Signalgruppe K6, Ströme 4, LA-Signal)

30,4 s/Kfz (Signalgruppe K6, Ströme 5 / 6)

Qualitätsstufe (QSV) D (=ausreichend)

Optimierter Verkehrsablauf (mit Linksabbiegephase) – Prognose Variante 2 (nach HBS)

maximale mittlere Wartezeiten = 60,4 s/Kfz (Signalgruppe K1, Ströme 2 / 3)

44,5 s/Kfz (Signalgruppe K3, Ströme 11 / 12)

48,8 s/Kfz (Signalgruppe K6, Ströme 4, LA-Signal)

30,1 s/Kfz (Signalgruppe K6, Ströme 5 / 6)

Qualitätsstufe (QSV) D (=ausreichend)

→ In beiden Varianten wird auch hier eine ausreichende Verkehrsqualität erreicht. Durch die Verlängerung der Umlaufzeit von 60sec auf 80sec und die zusätzliche Linksabbiegephase für die Bakumer Str. und die Keetstr. werden im Gegensatz zur optimierten 3-Phasen Schaltung keine Verbesserungen im Verkehrsablauf erzielt. Da die gegenüberliegenden Signalgruppen in einer 4-Phasen Schaltung nicht bedingt verträglich geschaltet werden, wird allerdings einem potenziellen Unfallrisiko entgegengewirkt und eine höhere Verkehrssicherheit erreicht.

5.1.1 Rückstaulänge (Keetstraße)

Bei Betrachtung der Rückstaulängen des LSA-Knotenpunktarmes "Dinklager Str./ Keetstr./ Vechtaer Str./ Bakumer Str." wird deutlich, dass der Abstand (rd. 45 m) zum Kreisverkehr "Keetstr. / Klapphakenstr." bereits im Analyse-Fall teilweise nicht ausreichend ist.

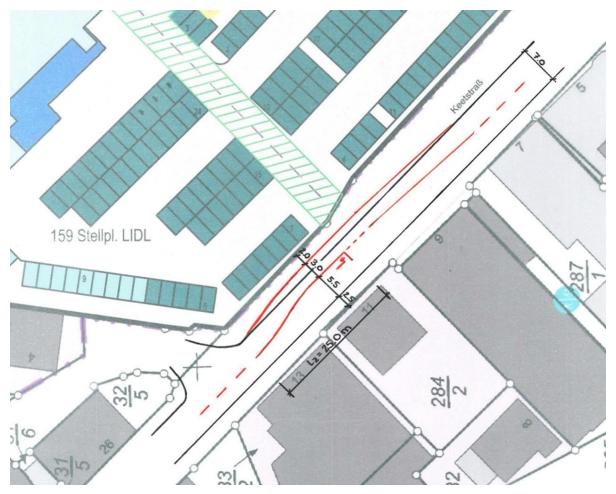
Die Rückstaulänge (95%) des **Geradeaus- und Rechtsabbiegestroms** beträgt in der Spitzenstunde im **Analyse-Fall 59 m**. Der **Linksabbieger** erzeugt einen **Rückstau von 38 m**. Somit kommt es schon heute teils zu einer Überstauung des Kreisverkehrs und einer Beeinträchtigung des Verkehrsflusses.

In den optimierten Prognose-Fällen betragen die Rückstaulängen (95%) in der Spitzenstunde:

	Geradeaus-/	
	Rechtsabbiegestrom	Linksabbiegespur
Var. 1 – Reduzierung Grünzeit (1 Zu-/Ausfahrt)	62 m	39 m
Var. 2 – Reduzierung Grünzeit (2 Zu-/Ausfahrten)	61 m	37 m
Var. 1 – Separate LA-Phase (1 Zu-/Ausfahrt)	69 m	51 m
Var. 2 – Separate LA-Phase (2 Zu-/Ausfahrten)	68 m	48 m

In beiden Prognose-Fällen nehmen die Rückstaulängen zu. Im optimierten Fall "Reduzierung der Grünzeit" ist die Rückstauzunahme im Gegensatz zur Analyse minimal. Die Veränderung würde sich somit nicht nennenswert auf die Überstauung auswirken. Die Beeinträchtig des Verkehrsflusses ist, gegenüber heute, als gering einzuschätzen. Im Fall einer separaten Linksabbiegephase würde sich die Rückstaulänge um rd. 10m erhöhen. Dies könnte sich negativ auf den Kreisverkehr auswirken.

5.2 KP 03 – Keetstr./ Parkplatz Lidl Famila


5.2.1 Linksabbiegehilfe

Mit dem aufkommenden Mehrverkehr und damit verbundenen eventuellen Einschränkungen des Verkehrsflusses am Knotenpunkt 03 (Keetstr. / Parkplatz Lidl und Famila) besteht die Möglichkeit des Ausbaues des Knotenpunktes.

Durch die ansteigende Verkehrsbelastung, besonders auf der Keetstraße, ist hinsichtlich des Sicherheitsniveaus eine Linksabbiegehilfe mit einer Aufstelllänge von 12 m empfehlenswert. Diese Länge würde Platz für mindestens zwei Fahrzeuge bieten.

Die Fahrbahn sollte einseitig, in die Richtung des Parkplatzes, um 1,50 m aufgeweitet werden. Diese Aufweitung würde sowohl auf dem Gehweg stattfinden, als auch die vorhandenen Parkplätze des Lidl in Anspruch nehmen (**Abbildung 20**). Die derzeitige Gehwegbreite würde erhalten bleiben.

Die dargestellte Linksabbiegehilfe entspricht den Mindestanforderungen der Richtlinie für die Anlage von Straßen (RAS-K, Teil: Entwurfselemente für Knotenpunkte, Abschnitt: Fahrstreifen) für die Errichtung einer Abbiegehilfe im innerörtlichen Bereich.

Abbildung 20: Darstellung der Linksabbiegehilfe Keetstr. (Skizze)

6 Zusammenfassung / Fazit

Die Untersuchung hat ergeben, dass die vorhandenen und prognostizierten Verkehrsbelastungen im Untersuchungsgebiet als weitestgehend unproblematisch zu bewerten sind.

Die entstehenden Verkehrsmengen durch die geplanten Märkte können im östlichen Teil des Untersuchungsbereiches (Meyerhofstr.) ohne nennenswerte Beeinträchtigung der Verkehrsqualität und Verkehrssicherheit von den Knotenpunkten aufgenommen werden.

Im westlichen Untersuchungsbereich (Keetstr.) führen die prognostizierten Verkehrsmengen teilweise zu einer Verschlechterung der Verkehrsqualität.

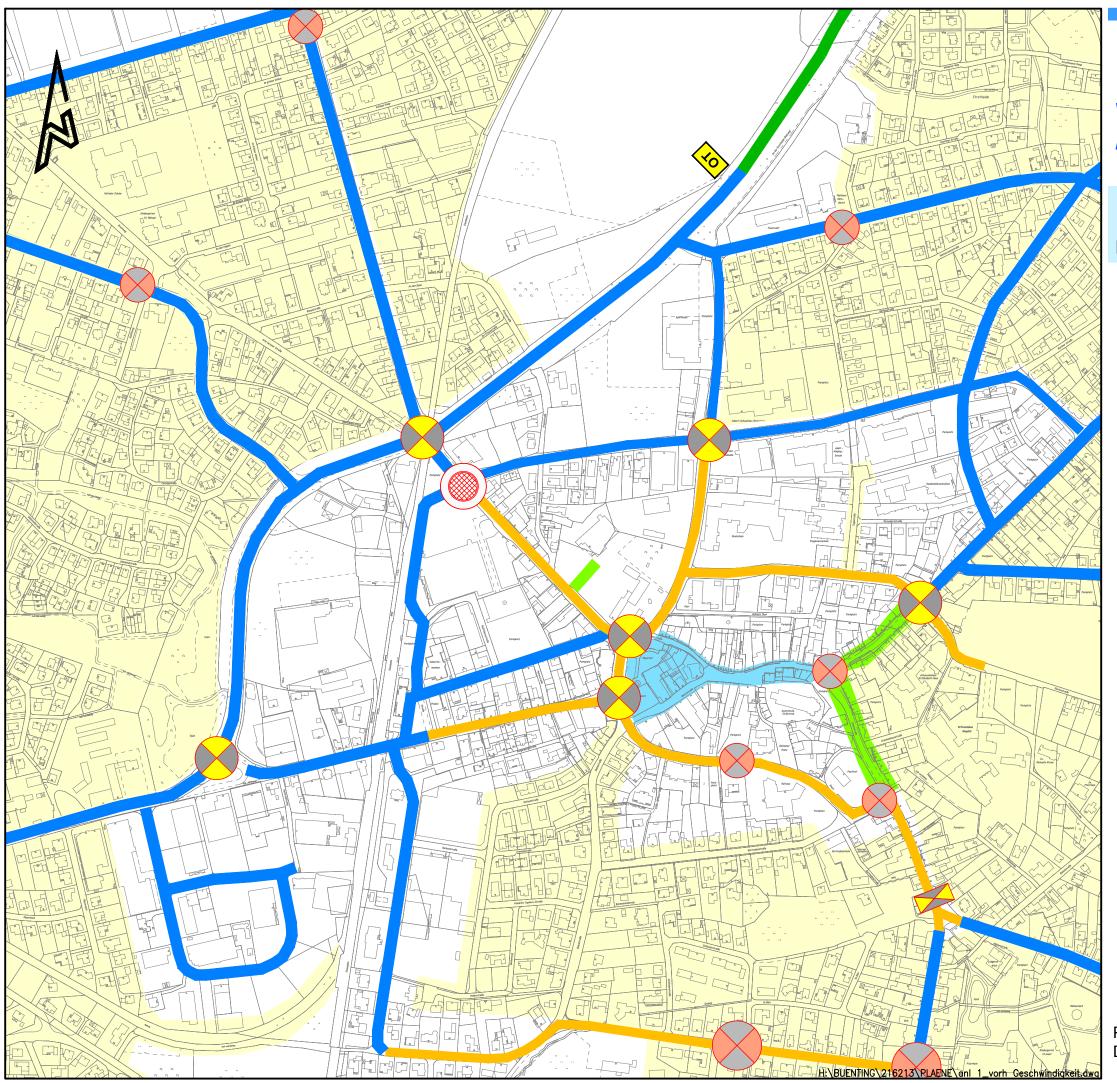
Am Knotenpunkt 01 (Dinklager Str./ Keetstr./ Vechtaer Str./ Bakumer Str.) kann durch beide Versionen einer optimierten Signalsteuerung die Verkehrsqualität im "ausreichenden" Bereich gehalten werden.

Es wird empfohlen, die vorhandene verkehrsabhängige Signalsteuerung unverändert beizubehalten. Die in der Berechnung angesetzte minimale Verlängerung/Verkürzung der Freigabezeit um 1sec im Festzeitprogramm bei einer künftigen Anpassung des Programms berücksichtigt werden. Akuter Handlungsbedarf besteht nicht.

Aufgrund mangelnder Zeitlücken im fließenden Verkehr der Keetstr. ist die Verkehrsqualität der Parkplatzausfahrt, vor allem in der ersten Variante (1 Zu-/Ausfahrt), am Knotenpunkt 03 nur ausreichend. Es kann besonders in dieser Variante aufgrund der langen Ausfahrzeiten mit risikoreichen Fahrmanövern und einem erhöhten Unfallrisiko gerechnet werden.

Aufgrund der gleichmäßigen und jeweils moderaten Verkehrszunahmen im Bereich Keetstr. und Meierhofstr. werden zwei Zu- und Ausfahrten des Parkplatzes gem. Variante 2 empfohlen.

In Bezug auf die Verträglichkeit sind die prognostizierten Verkehrsmengen auch an den Schulwegen als unproblematisch einzustufen. Ein Anstieg von Kfz-Mengen unter 10 % ist aus verkehrstechnischer Sicht als undenklich zu bewerten.


Wallenhorst, 2017-07-07

IPW INGENIEURPLANUNG GmbH & Co. KG

Manfred Ramm

Anlagen:

- Anlage 1: Lageplan "Bestandsaufnahme 2016", 1 Blatt
- Anlage 2: Auswertungsergebnisse der Verkehrszählung 2016, 11 Blatt
- **Anlage 3:** Lageplan "Neubau Famila" Büro beyer+freitag+zeh, 07.06.2017, 1 Blatt
- **Anlage 4:** Berechnungsblätter Verkehrserzeugung "Einzelhandel" (Ver_Bau), 9 Blatt
- **Anlage 5.1:** Beurteilung Knotenpunkt 01 nach der Berechnung gem. HBS 2015 (Analyse, Prognose Variante 1, Prognose Variante 2), 14 Seiten
- **Anlage 5.2:** Beurteilung Knotenpunkt 02 nach der Berechnung gem. HBS 2015 (Analyse, Prognose Variante 1, Prognose Variante 2), 9 Seiten
- **Anlage 5.3:** Beurteilung Knotenpunkt 03 nach der Berechnung gem. HBS 2015 (Analyse, Prognose Variante 1, Prognose Variante 2), 18 Seiten
- **Anlage 5.4:** Beurteilung Knotenpunkt 04 nach der Berechnung gem. HBS 2015 (Analyse, Prognose Variante 1, Prognose Variante 2), 18 Seiten
- **Anlage 5.5:** Beurteilung Knotenpunkt 05 nach der Berechnung gem. HBS 2015 (Analyse, Prognose Variante 1, Prognose Variante 2), 14 Seiten
- **Anlage 5.6:** Beurteilung Knotenpunkt 06 nach der Berechnung gem. HBS 2015 (Analyse, Prognose Variante 1, Prognose Variante 2), 21 Seiten
- Anlage 5.7: Beurteilung Knotenpunkt 07 nach der Berechnung gem. HBS 2015 (Analyse, Prognose Variante 1, Prognose Variante 2), 14 Seiten
- **Anlage 5.8:** Beurteilung Knotenpunkt 08 nach der Berechnung gem. HBS 2015 (Analyse, Prognose Variante 1, Prognose Variante 2), 18 Seiten
- **Anlage 5.9:** Beurteilung Knotenpunkt 09 nach der Berechnung gem. HBS 2015 (Analyse, Prognose Variante 1, Prognose Variante 2), 18 Seiten
- Anlage 6.1: Beurteilung Knotenpunkt 01 nach der Berechnung gem. HBS 2015 im optimierten Prognose-Fall 1 Variante 1 und Prognose-Fall Variante 2, 12 Seiten
- Anlage 6.2: Beurteilung Knotenpunkt 01 nach der Berechnung gem. HBS 2015 im optimierten Prognose-Fall 2 Variante 1 und Prognose-Fall Variante 2, 12 Seiten

Verkehrsuntersuchung "Famila" in Lohne

Stand 2016

Anlage 1

Bestandsaufnahme - Geschwindigkeiten

Legende:

Fußgängerzone Tempo -30- Zone Tempo 20- Zone Tempo 30 Tempo 50 Tempo 60 Tempo 70

Tempo100

Lichtsignalanlage

Tempo 80

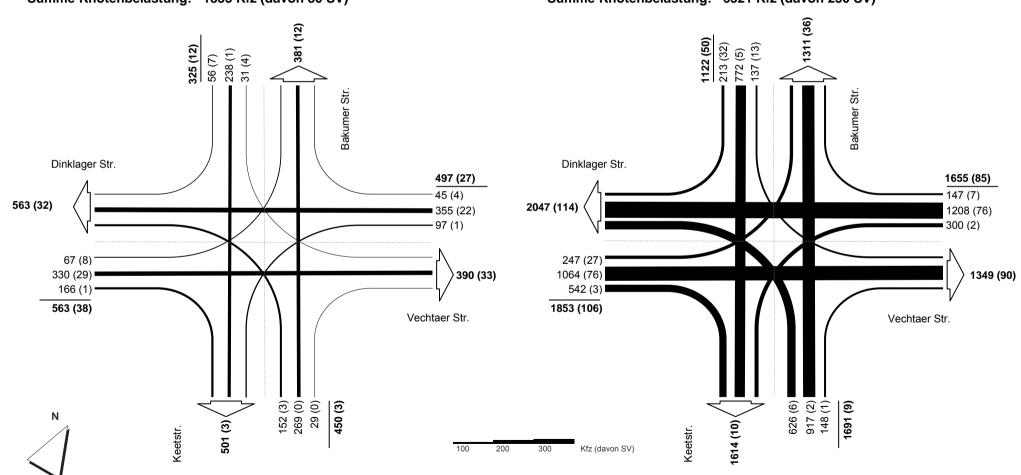
Fußgängersignalanlage

Querungshilfe

vorh. Kreisverkehr

Ortstafel

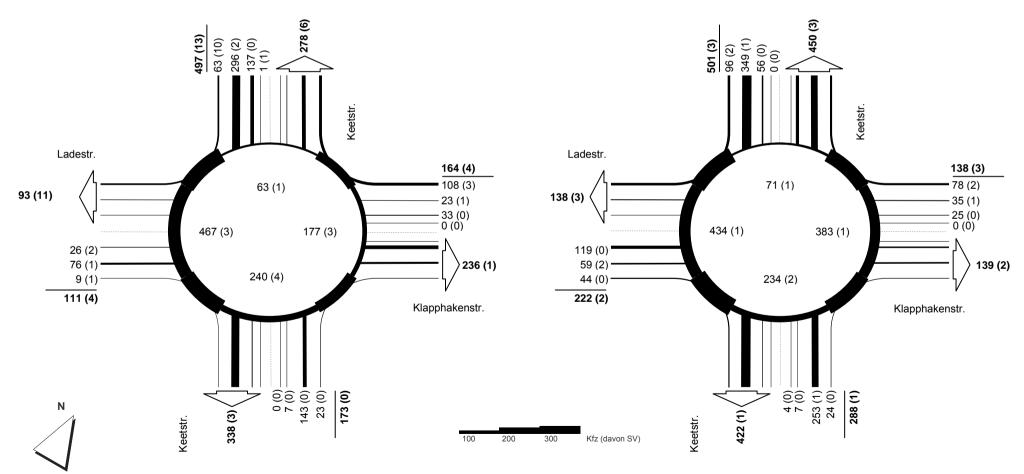
Projektnummer: 216213 Datum: 2016-08-01



Anlage 02

Knotenstrombelastung - Dinklager-Vechtaer Straße / Keetstraße / Bakumer Straße

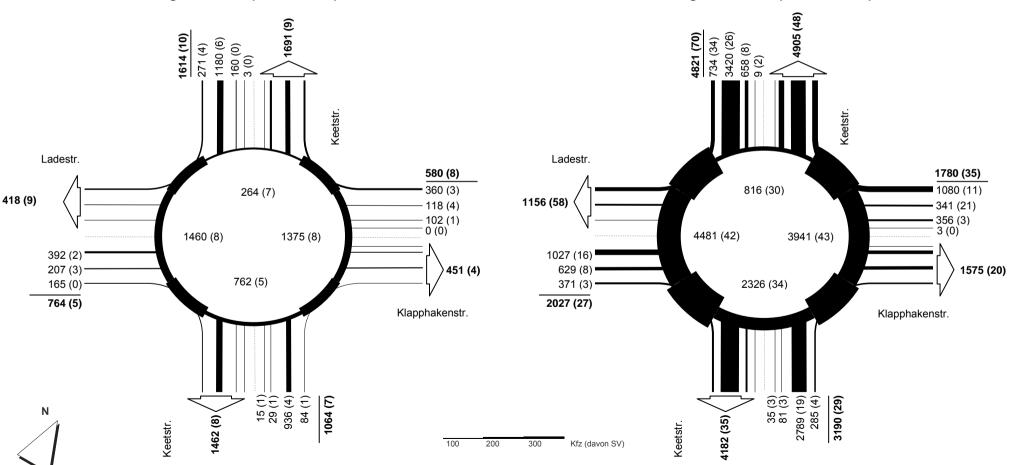
Bestand am 03.05.2016 **Abendspitze** Bestand am 03.05.2016 4-h-Block Zählzeitraum: 15:00 - 19:00 Uhr Zählzeitraum: 15:00 - 19:00 Uhr 16:15 - 17:15 Uhr 15:00 - 19:00 dargestellte Belastungen: dargestellte Belastungen: Uhr Summe Knotenbelastung: 1835 Kfz (davon 80 SV) Summe Knotenbelastung: 6321 Kfz (davon 250 SV)



Anlage 02

Knotenstrombelastung - Keetstraße / Klapphakenstraße / Ladestraße

Bestand am 03.05.2016 Morgenspitze Bestand am 03.05.2016 **Abendspitze** Zählzeitraum: 06:00 - 22:00 Zählzeitraum: 06:00 - 22:00 Uhr Uhr 07:30 - 08:30 Uhr 16:15 - 17:15 dargestellte Belastungen: dargestellte Belastungen: Uhr Summe Knotenbelastung: 945 Kfz (davon 21 SV) Summe Knotenbelastung: 1149 Kfz (davon 9 SV)



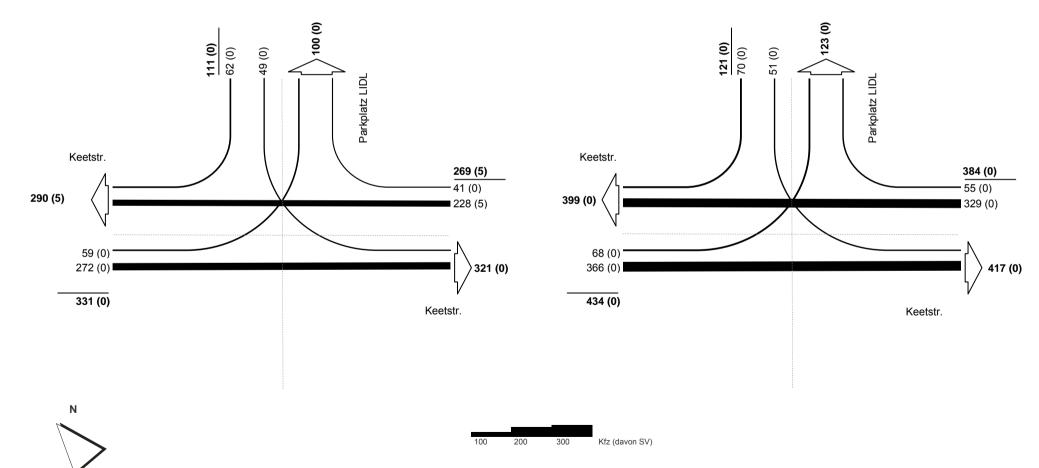
Anlage 02

Knotenstrombelastung - Keetstraße / Klapphakenstraße / Ladestraße

Bestand am 03.05.2016 4-h-Block Bestand am 03.05.2016 16-h-Block Zählzeitraum: Zählzeitraum: 06:00 - 22:00 Uhr 06:00 - 22:00 Uhr 15:00 - 19:00 Uhr 06:00 - 22:00 dargestellte Belastungen: dargestellte Belastungen: Uhr **Summe Knotenbelastung:** 4022 Kfz (davon 30 SV) Summe Knotenbelastung: 11818 Kfz (davon 161 SV)

Anlage 02

Knotenstrombelastung - Keetstraße / Parkplatz LIDL


Bestand am 03.05.2016 Morgenspitze

Zählzeitraum: 06:00 - 22:00 Uhr dargestellte Belastungen: 10:15 - 11:15 Uhr

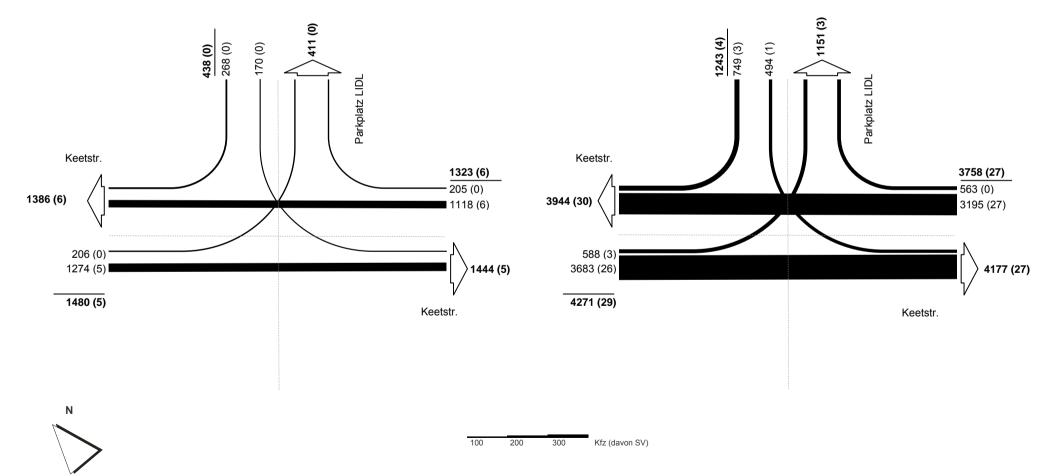
Summe Knotenbelastung: 711 Kfz (davon 5 SV)

Bestand am 03.05.2016 Abendspitze

Zählzeitraum: 06:00 - 22:00 Uhr dargestellte Belastungen: 17:00 - 18:00 Uhr Summe Knotenbelastung: 939 Kfz (davon 0 SV)

Anlage 02

Knotenstrombelastung - Keetstraße / Parkplatz LIDL


Bestand am 03.05.2016 4-h-Block

Zählzeitraum: 06:00 - 22:00 Uhr dargestellte Belastungen: 15:00 - 19:00 Uhr

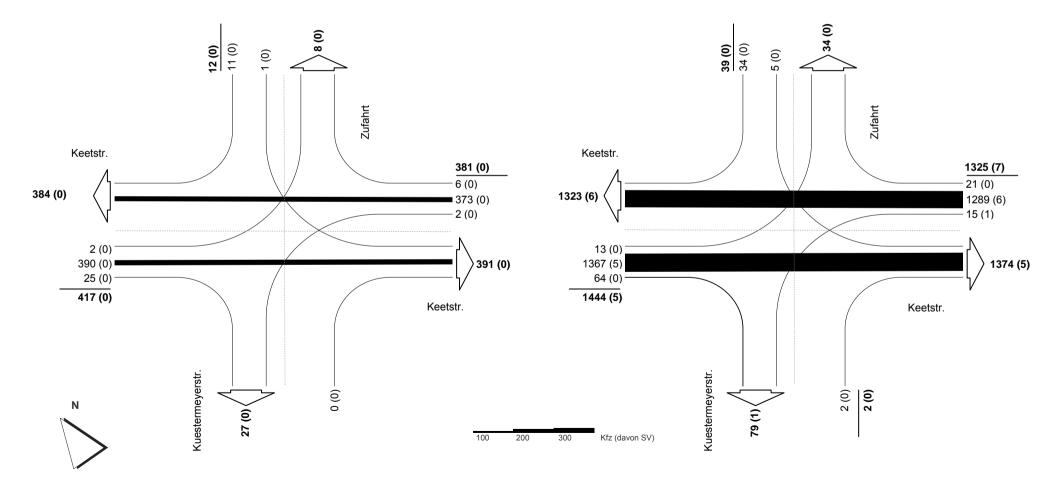
Summe Knotenbelastung: 3241 Kfz (davon 11 SV)

Bestand am 03.05.2016 16-h-Block

Zählzeitraum: 06:00 - 22:00 Uhr dargestellte Belastungen: 06:00 - 22:00 Uhr Summe Knotenbelastung: 9272 Kfz (davon 60 SV)

Anlage 02

Knotenstrombelastung - Keetstraße / Kuestermeyerstraße


Bestand am 03.05.2016 Abendspitze

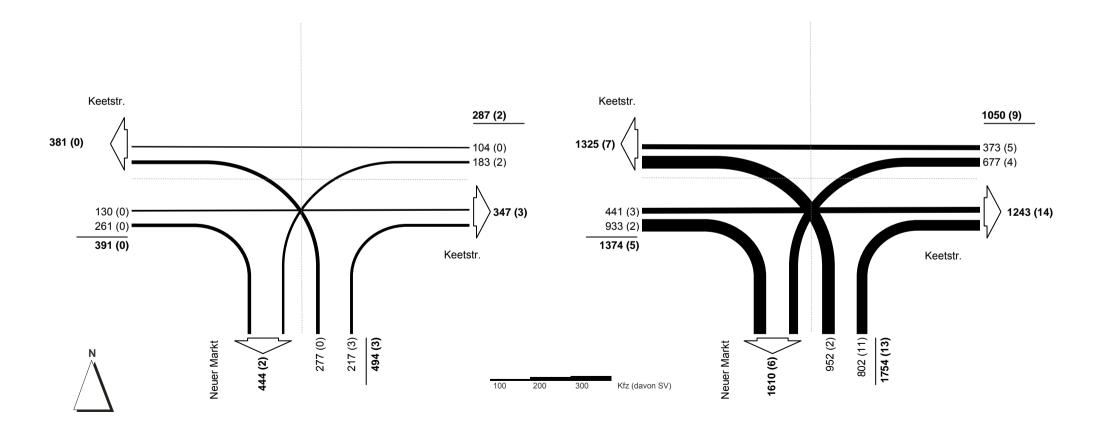
Zählzeitraum: 15:00 - 19:00 Uhr dargestellte Belastungen: 17:00 - 18:00 Uhr

Summe Knotenbelastung: 810 Kfz (davon 0 SV)

Bestand am 03.05.2016 4-h-Block

Zählzeitraum: 15:00 - 19:00 Uhr dargestellte Belastungen: 15:00 - 19:00 Uhr Summe Knotenbelastung: 2810 Kfz (davon 12 SV)

Anlage 02


Knotenstrombelastung - Keetstraße / Neuer Markt

Bestand am 03.05.2016 Abendspitze

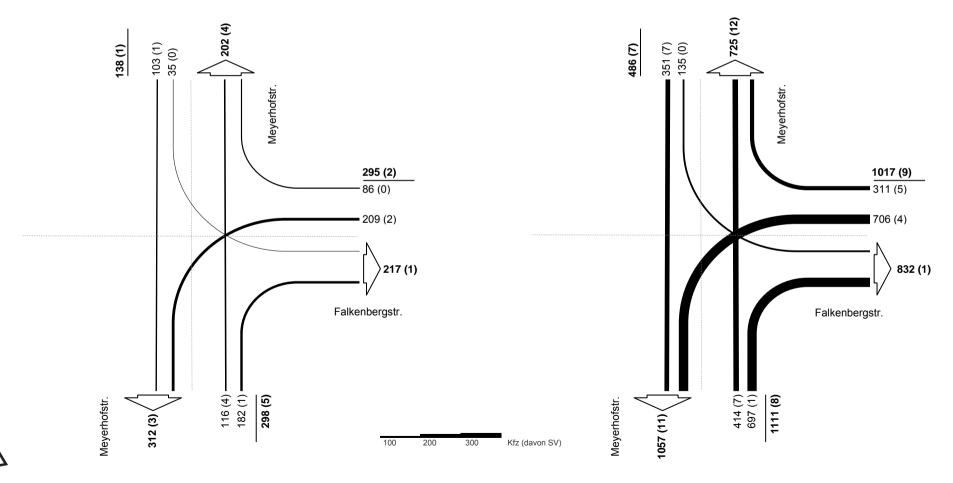
Zählzeitraum: 15:00 - 19:00 Uhr dargestellte Belastungen: 17:00 - 18:00 Uhr Summe Knotenbelastung: 1172 Kfz (davon 5 SV)

Bestand am 03.05.2016 4-h-Block

Zählzeitraum: 15:00 - 19:00 Uhr dargestellte Belastungen: 15:00 - 19:00 Uhr Summe Knotenbelastung: 4178 Kfz (davon 27 SV)

Anlage 02

Knotenstrombelastung - Meyerhofstraße / Falkenbergstraße


Bestand am 03.05.2016 Abendspitze

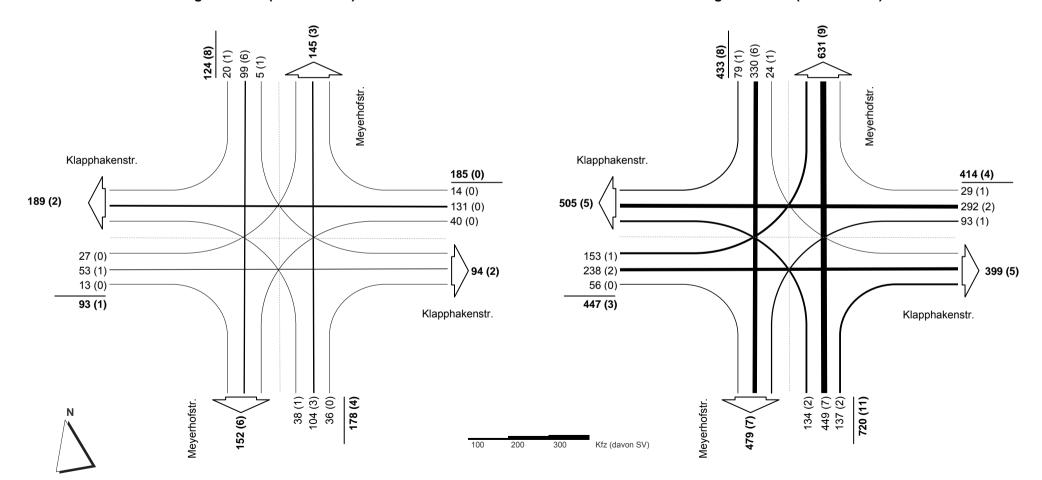
Zählzeitraum: 15:00 - 19:00 Uhr dargestellte Belastungen: 15:45 - 16:45 Uhr

Summe Knotenbelastung: 731 Kfz (davon 8 SV)

Bestand am 03.05.2016 4-h-Block

Zählzeitraum: 15:00 - 19:00 Uhr dargestellte Belastungen: 15:00 - 19:00 Uhr Summe Knotenbelastung: 2614 Kfz (davon 24 SV)

Anlage 02


Knotenstrombelastung - Meyerhofstraße / Klapphakenstraße

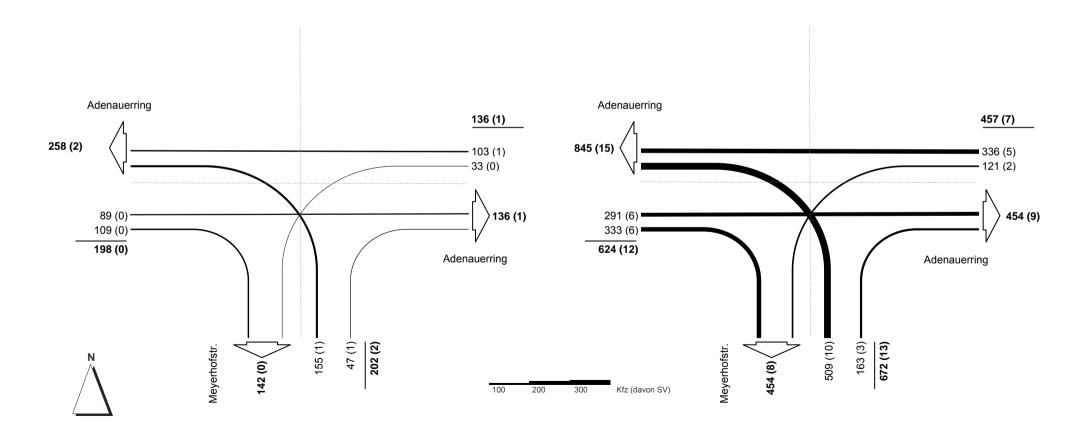
Bestand am 03.05.2016 **Abendspitze** Zählzeitraum: 15:00 - 19:00 Uhr 15:00 - 16:00 Uhr dargestellte Belastungen: **Summe Knotenbelastung:**

580 Kfz (davon 13 SV)

Bestand am 03.05.2016 4-h-Block

Zählzeitraum: 15:00 - 19:00 Uhr 15:00 - 19:00 dargestellte Belastungen: Uhr Summe Knotenbelastung: 2014 Kfz (davon 26 SV)

Anlage 02


Knotenstrombelastung - Meyerhofstraße / Adenauerring

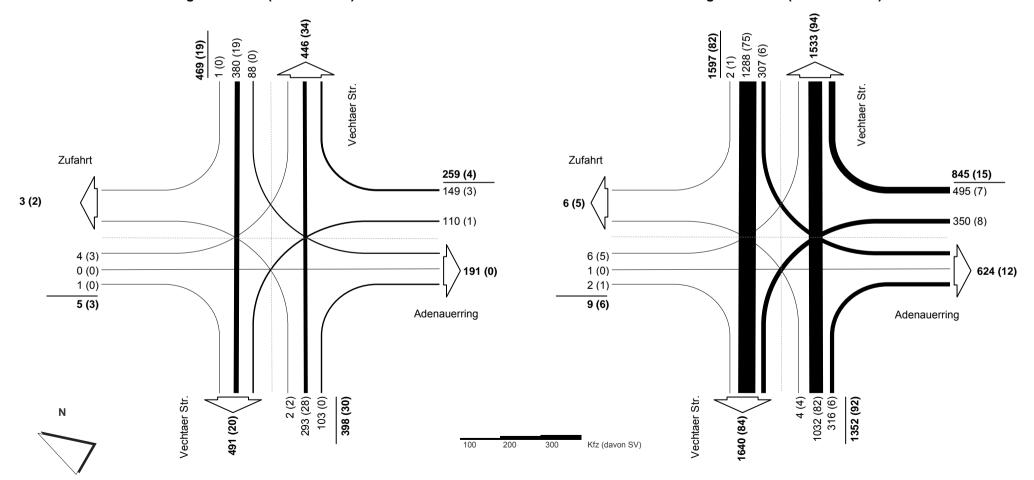
Bestand am 03.05.2016 Abendspitze

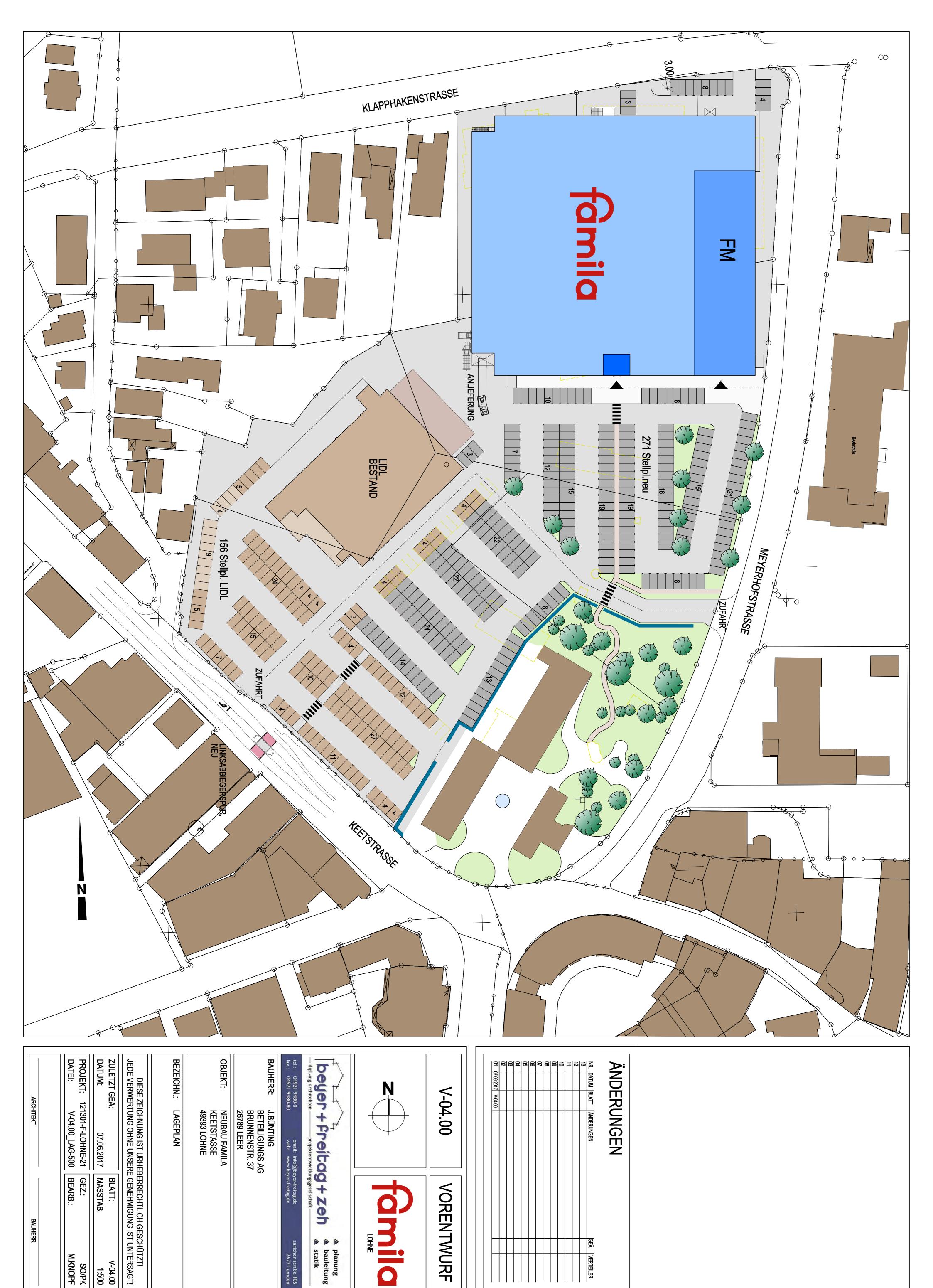
Zählzeitraum: 15:00 - 19:00 Uhr dargestellte Belastungen: 16:45 - 17:45 Uhr Summe Knotenbelastung: 536 Kfz (davon 3 SV)

Bestand am 03.05.2016 4-h-Block

Zählzeitraum: 15:00 - 19:00 Uhr dargestellte Belastungen: 15:00 - 19:00 Uhr Summe Knotenbelastung: 1753 Kfz (davon 32 SV)

Anlage 02


Knotenstrombelastung - Vechtaer Straße / Adenauerring


Bestand am 03.05.2016 Abendspitze

Zählzeitraum: 15:00 - 19:00 Uhr
dargestellte Belastungen: 16:30 - 17:30 Uhr
Summe Knotenbelastung: 1131 Kfz (davon 56 SV)

Bestand am 03.05.2016 4-h-Block

Zählzeitraum: 15:00 - 19:00 Uhr dargestellte Belastungen: 15:00 - 19:00 Uhr Summe Knotenbelastung: 3803 Kfz (davon 195 SV)

3.3.2 Abschätzung der Kunden-/Besucheranzahl über die Verkaufsfläche

Gebiet	Nutzung	<u>VKF</u> in qm	Kunden/ qm VKF		
			<u>K/VKF</u>		
			Min	Max	
	Famila Vollsort.	4.000	0,48	0,48	
	Drogerie	1.000	0,80	0,80	
	Shops	650	0,50	0,50	
Summe		5.650			

Kund	den
Min	Max
1.929	1.929
803	803
325	325
3.057	3.057

3.3.2 Abschätzung der Beschäftigtenanzahl über die Verkaufsfläche

Gebiet	Nutzung	VKF	VKF/		
		in qm	Beschäftigte		
			VKF/B		
			Max Min		
	Famila Vollsort.	4.000	70	70	
	Drogerie	1.000	40	40	
	Shops	650	30	30	
Summe		5.650			

Beschä	äftigte
Min	Max
57	57
25	25
22	22
104	104

Zusammenstellung der Ergebnisse für die Kunden-/Besucheranzahl

Gebiet	Nutzung	Kunden		Kunden		Kunden		Kunden		Kunden	
		Abschätzung über Bruttogeschossfläche		Abschätzung über Verkaufsfläche		Abschätzung über Jahresumsatz		Abschätzung über Analogieschluss		Gewählte Anzahl für Verkehrsabschätzung	
		Min Max		Min	Max	Min	Max	Min	Max	Min	Max
	Famila Vollsort.			1.929	1.929					1.968	1.968
	Drogerie			803	803					851	851
	Shops			325	325					343	343
Summe				3.057	3.057					3.162	3.162

Zusammenstellung der Ergebnisse für die Beschäftigtenanzahl

Gebiet	Nutzung	Beschäftigte		Beschäftigte		Beschäftigte		Beschäftigte		Beschäftigte	
		Abschätzung über Bruttogeschossfläche		Abschätzung über Verkaufsfläche		Abschätzung über Anteil VKF an BGF		Abschätzung über Analogieschluss		Gewählte Anzahl für Verkehrsabschätzung	
		Bruttogest	nossnache	verkaui		Anten vr	r an BGF	Analogi	eschiuss	verkenrsab	schatzung
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
	Famila Vollsort.			57	57					55	55
	Drogerie			25	25					25	25
	Shops			22	22					20	20
Summe	Summe		104	104					100	100	

Einzelhandelseinrichtungen: Abschätzung des Verkehrsaufkommens

Kundenverkehr:

Nachfolgend wird die im Arbeitsblatt "Schlüsselgrößen" in der Tabelle am Schluss im fett umrahmten Teil gewählte Kundenanzahl verwendet.

Gebiet	<u>Nutzung</u>	Kunden		Nutzung Kunden Wege/Werktag		/erktag	MIV-Anteil		Pkw-
								Besetzung	
				2,	0				
				Wege	e/K/d	<u>in</u>	<u>%_</u>	Pers./Pkw	
		Min	Max	Min	Max	Min	Max		
	Famila Vollsort.	1.968	1.968	3.936	3.936	80	80	1,2	
	Drogerie	851	851	1.702	1.702	80	80	1,2	
	Shops	343	343	686	686	80	80	1,2	
Summe		3.162	3.162	6.324	6.324				

Pkw-Fahrten/							
Werl	ktag						
Min	Max						
2.624	2.624						
1.135	1.135						
457	457						
4.216	4.216						

Beschäftigtenverkehr:

Nachfolgend wird die im Arbeitsblatt "Schlüsselgrößen" in der Tabelle am Schluss im fett umrahmten Teil gewählte Beschäftigtenanzahl verwendet.

Gebiet	Nutzung	Beschäftigte		Anwe-	Wege/		Wege/Werktag		MIV-Anteil	
				senheit	Beschäf	Beschäftigtem/d				
				<u>in %</u>	Wege	<u>e/B/d</u>			<u>in %</u>	
		Min	Max		Min	Max	Min	Max	Min	Max
	Famila Vollsort.	55	55	75	2,1	2,1	87	87	60	60
	Drogerie	25	25	75	2,1	2,1	39	39	60	60
	Shops	20	20	75	2,1	2,1	32	32	60	60
				100						
				100				·		
Summe		100	100				158	158		

Pkw-Fa	Pkw-Fahrten/						
Wer	ktag						
1,	1						
Pers.	<u>/Pkw</u>						
Min	Max						
47	47						
21	21						
17	17						
85	85						

Güter- und Gesamtverkehr ohne Berücksichtigung von Konkurrenz-/Verbund-/Mitnahmeeffekten Hinweis: Es sind entweder die VKF **oder** die BGF und die zugehörigen spezifischen Werte einzugeben!

Gebiet	Nutzung	Fläche	Lkw-Fahrten/		Lkw-	Lkw-Fahrten/	
		in qm	100 qm	Fläche	Anteil	Werktag	
		VKF	Lkw-F/\	VKF/d			
		BGF	Lkw-F/E	BGF/d	<u>in %</u>		
			Min	Min Max		Min	Max
	Famila Vollsort.	4.000	0,40	0,40	100	16	16
	Drogerie	1.000	0,70	0,70	100	7	7
	Shops	650	0,80	0,80	100	5	5
					100		
					100		
Summe		5.650		·		28	28

Kfz-Fa	Kfz-Fahrten/								
Werktag									
Min	Max								
2.687	2.687								
1.163	1.163								
479	479								
4.329	4.329								

Güter- und Gesamtverkehr bei Berücksichtigung von Konkurrenz-/Verbund-/Mitnahmeeffekten

Gebiet	Nutzung	Fläche	Anteil	Anteil	Anteil	Pkw-Fa	ahrten/	Lkw-Fahrten/		
		in qm	Konkurrenz	Verbund-	Mitnahme-	Wer	ktag	Werktag		
		VKF	effekt	effekt	effekt					
		BGF	<u>in %</u>	<u>in %</u>	<u>in %</u>					
						Min	Max	Min	Max	
	Famila Vollsort.	4.000	15	10	0	2.015	2.015	16	16	
	Drogerie	1.000	10	30	0	702	702	7	7	
	Shops	650	5	50	0	223	223	5	5	
			0	0	0					
			0	0	0					
Summe		5.650				2940	2940	28	28	

Kfz-Fahrten/ Werktag								
Min	Max							
2.031	2.031							
709	709							
228	228							
2.968	2.968							

Neu induzierte Kfz-Fahrten/ Werktag							
Max							
2.031							
709							
228							
2.968							

© Dr. Bosserhoff

Anlage 4

Einzelhandelseinrichtungen: Kfz-Verkehr (ohne Berücksichtigung von Mitnahmeeffekten)

Tagesbelastungen im Kfz-Verkehr: Gebietsbezogener Verkehr [Fahrten mit Pkw/Lkw/Kfz]: Fahrzeuge/24h*Gesamtquerschnitt Quell-/Zielverkehr der Einrichtung

Gebiet	Nutzung				Einzelhand	elsnutzung				
		Kunden-	Verkehr	Beschäftigt	en-Verkehr	Güter-\	/erkehr	Gesamtverkehr		
		Pkw-Fahrten		Pkw-F	Pkw-Fahrten Lkw-F		ahrten	Kfz-Fahrten		
		Min	Max	Min	Max	Min	Max	Min	Max	
	Famila Vollsort.	1.968	1.968	47	47	16	16	2.031	2.031	
	Drogerie	681	681 681		21	7	7	709	709	
	Shops	206	206	17	17	5	5	228	228	
Summe		2.855	2.855	85	85	28	28	2.968	2.968	

Binnenverkehrs-Anteile im Kfz-Verkehr (Anteile der Fahrten mit Quelle und Ziel im Plangebiet):

Hinweis: Binnenverkehr tritt auf, wenn die Einrichtung in einem Gebiet mit zusätzlichen Nutzungen liegt, für die ebenfalls der Verkehr abzuschätzen ist.

Gebiet	Nutzung		Einzelhandelsnutzung	
		Kunden-Verkehr	Beschäftigten-Verkehr	Güter-Verkehr
		Anteil Binnen-V.	Anteil Binnen-V.	Anteil Binnen-V.
		in %	in %	in %
	Famila Vollsort.	0	0	0
	Drogerie	0	0	0
	Shops	0	0	0
		0	0	0
		0	0	0

Tagesbelastungen im Kfz-Verkehr: Quell-/Zielverkehr [Fahrten mit Pkw/Lkw/Kfz]: Fahrzeuge/24h*Gesamtquerschnitt ohne Binnenverkehr (d.h. Fahrten mit Quelle und Ziel im Plangebiet)

Gebiet	Nutzung				Einzelhand	elsnutzung				
		Kunden-	-Verkehr	Beschäftigt	en-Verkehr	Güter-\	/erkehr	Gesamtverkehr		
		Pkw-Fahrten		Pkw-F	Pkw-Fahrten l		Lkw-Fahrten		hrten	
			Max	Min	Max	Min	Max	Min	Max	
	Famila Vollsort.	1.968	1.968	47	47	16	16	2.031	2.031	
	Drogerie	681	681 681		21	7	7	709	709	
	Shops	206	206	17	17	5	5	228	228	
Summe		2.855	2.855	85	85	28	28	2.968	2.968	

Richtungsbezogene Kfz-Tagesbelastungen im Quell-/Zielverkehr [Pkw/Lkw/Kfz]: Fahrzeuge/24h*Richtung

Gebiet	Nutzung				Einzelhand	elsnutzung				
		Kunden-	Verkehr	Beschäftigten-Verkehr		Güter-\	/erkehr	Quell-/Zielverkehr		
		Pkw		Pk	Pkw LI		.W	Kf	Z	
		Min	Max	Min	Max	Min	Max	Min	Max	
	Famila Vollsort.	984	984	24	24	8	8	1.016	1.016	
	Drogerie	341	341	11	11	4	4	356 3 115		
	Shops	103	103	9	9	3	3			
Summe		1.428	1.428 1.428		44	15	15	1.487	1.487	

	Mittelwert	Mittelwert	Mittelwert	Mittelwert
Summe	1.428	44	15	1.487

Richtungsbezogene Kfz-Tagesbelastungen im Quell-/Zielverkehr [Pkw-Einheiten]: Pkw-Einheiten/24h*Richtung

Gebiet	Nutzung				Einzelhande	elsnutzung				
		Kunden-	Verkehr	Beschäftigt	en-Verkehr	Güter-\	/erkehr	Quell-/Zielverkehr		
		Pkw-E		Pkv	/-E Pk		v-E	Pkw	<i>/</i> -E	
		Min	Max	Min	Max	Min	Max	Min	Max	
	Famila Vollsort.	984	984	24	24	16	16	1.024	1.024	
	Drogerie	341	341 341		11	8	8	360	360	
	Shops	103	103	9	9	6	6 6	118	118	
Summe		1.428	1.428	44	44	30	30	1.502	1.502	

	Mittelwert	Mittelwert	Mittelwert	Mittelwert
Summe	1.428	44	30	1.502

Einzelhandelseinrichtungen: Richtungsbezogene Kfz-Stundenbelastungen im Quellverkehr [Fahrzeuge/h*Richtung]

Bezugswert: Mittelwert des täglichen Quellverkehrs der Summe aller Einrichtungen in Kfz

Stunde	Einzelha	ndelsnutzu	ıng: Ganglir	nien für ne	ue Öffnunç	gszeiten	Einzelha	ındelsnutzı	ung: Gang	linien für a	alte Öffnui	ngszeiten	Gesamt-	Stunde
	Kunden-'	<u>Verkehr</u>	Beschäft	igten-V.	Güter-\	<u>/erkehr</u>	Kunden-	-Verkehr	Beschäf	ftigten-V.	Güter-	<u>Verkehr</u>	Verkehr	
	<u>Bezug</u>	<u>swert</u>	Bezug	<u>swert</u>	<u>Bezug</u>	<u>swert</u>	<u>Bezug</u>	swert Bezugswert		<u>gswert</u>	<u>Bezugswert</u>			
	1.4		44			5	(,		0		0	1.487	
	Anteil	Pkw	Anteil	Pkw	Anteil	Lkw	Anteil	Pkw	Anteil	Pkw	Anteil	Lkw	Kfz	
00-01	0,00	0	0,00	0	0,00	0	0,00	0		0		0	0	00-01
01-02	0,00	0	0,00	0	0,00	0	0,00	0		0		0	U	01-02
02-03	0,00	0	0,00	0	0,00	0	0,00	0		0		0	0	02-03
03-04	0,00	0	0,00	0	0,00	0	0,00	0		0		0	0	03-04
04-05	0,00	0	0,00	0	0,00	0	0,00	0		0		0	Ū	
05-06	0,00	0	0,00	0	0,00	0	0,00	0		0		0	Ŭ	05-06
06-07	0,00	0	0,00	0	0,00	0	0,00	0		0		0	ŭ	06-07
07-08	1,75	25	0,00	0	20,00	3	0,00	0		0		0	_0	07-08
08-09	1,75	25	0,00	0	20,00	3	0,00	0		0		0		08-09
09-10	5,40	77	0,00	0	10,00	2	0,00	0		0		0	. 0	09-10
10-11	9,30	133	0,00	0	0,00	0	0,00	0		0		0		10-11
11-12	7,60	109	10,00	4	0,00	0	0,00	0		0		0		11-12
12-13	8,00	114	0,00	0	0,00	0	0,00	0		0		0		12-13
13-14	5,90	84	0,00	0	0,00	0	0,00	0		0		0	<u> </u>	13-14
14-15	7,00	100	0,00	0	20,00	3	0,00	0		0		0	.00	14-15
15-16	8,90	127	0,00	0	20,00	3	0,00	0		0		0	.00	15-16
16-17	17,30	247	20,00	9	0,00	0	0,00	0		0		0		16-17
17-18	10,10	144	20,00	9	0,00	0	0,00	0		0		0		17-18
18-19	8,40	120	0,00	0	10,00	2	0,00	0		0		0		18-19
19-20	5,40	77	0,00	0	0,00	0	0,00	0		0		0		19-20
20-21	3,20	46	30,00	13	0,00	0	0,00	0		0		0		20-21
21-22	0,00	0	10,00	4	0,00	0	0,00	0		0		0		21-22
22-23	0,00	0	10,00	4	0,00	0	0,00	0		0		0	-	22-23
23-24	0,00	1 420	0,00	0	0,00	0	0,00	0		0		0	Ü	23-24
Summe	100,00	1.428	100,00	44	100,00	15	0,00	0	0,00	0	0,00	0		Summe
Komment.	EKZ 2	2007	FH Kölr	1 2001	EKZ	2010	Aldi 2	2003					256	Maximum

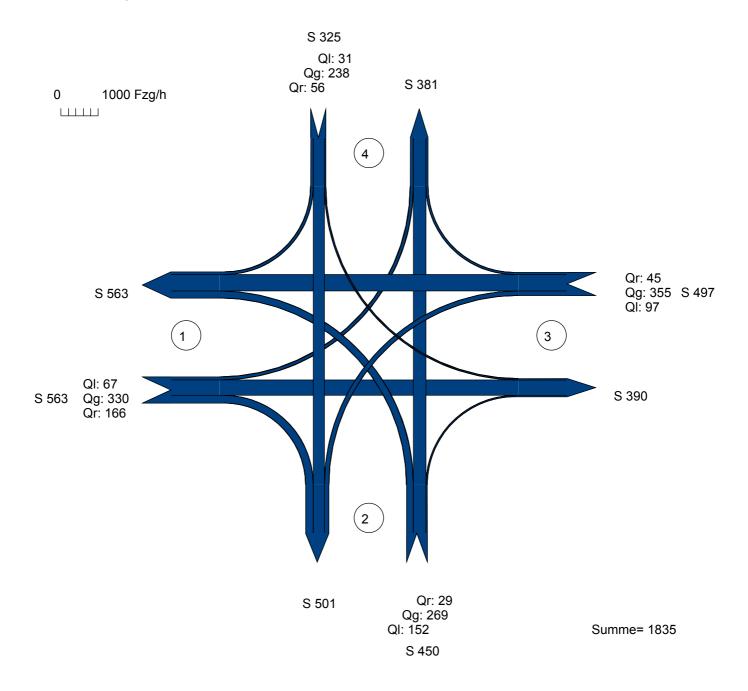
Maximum

Einzelhandelseinrichtungen: Richtungsbezogene Kfz-Stundenbelastungen im Zielverkehr [Fahrzeuge/h*Richtung]

Be	zugswert:			Mittelw	ert des täg	lichen Ziel	verkehrs de	er Summe	aller Einric	chtungen i	n Kfz					
	Stunde Einzelhandelsnutzung: Ganglinien für neue Öffnungszeiten Einzelhandelsnutzung: Ganglinien für alte Öffnungszeiten												Gesamt- Stunde		7	
	Otariao	Kunden-Verkehr Bezugswert		Beschäf			/erkehr		-Verkehr	Beschäf			Verkehr	Verkehr	Otanao	
							gswert		gswert		gswert		gswert			
		1.42		4			5	(0		0	1.487		
		Anteil	Pkw	Anteil	Pkw	Anteil	Lkw	Anteil	Pkw	Anteil	Pkw	Anteil	Lkw	Kfz		
	00-01	0,00	0	0,00	0	0,00	0	- ,	0		0		0	0	00-01	
	01-02	0,00	0	0,00	0	0,00	0	0,00	0		0		0	0	01-02	
	02-03	0,00	0	0,00		0,00	0	0,00	0		0		0	0	02-03	
	03-04	0,00	0	0,00	0	0,00	0	0,00	0		0		0	0	03-04	
	04-05	0,00	0	0,00	0	0,00	0	0,00	0		0		0	0	04-05	
	05-06	0,00	0	0,00	0	0,00	0	0,00	0		0		0	0	05-06	
	06-07	0,00	0	5,00		0,00	0	0,00	0		0		0	2	06-07	
	07-08	2,70	39	15,00		5,00	1	0,00	0		0		0	46	07-08	
	08-09	5,05	72	30,00	13	15,00	2	0,00	0		0		0	88	08-09	1
	09-10	6,65	95	10,00	4	20,00	3	0,00	0		0		0	102	09-10	
	10-11	6,20	89	0,00		0,00	0	0,00	0		0		0	89	10-11	1
	11-12	6,90	99	10,00	4	0,00	0	0,00	0		0		0	103	11-12	
	12-13	6,75	96	0,00	0	10,00	2	0,00	0		0		0	98	12-13	
	13-14	4,95	71	20,00	9	0,00	0	0,00	0		0		0	79	13-14	1
	14-15	6,25	89	0,00	0	10,00	2	0,00	0		0		0	91	14-15	1
	15-16	8,90	127	0,00	0	20,00	3	0,00	0		0		0	130	15-16	1
	16-17	21,10	301	10,00	4	10,00	2	0,00	0		0		0	307	16-17	Maximum
	17-18	9,00	129	0,00	0	0,00	0	0,00	0		0		0	129	17-18	1
	18-19	9,10	130	0,00	0	5,00	1	0,00	0		0		0	131	18-19	1
	19-20	6,45	92	0,00	0	5,00	1	0,00	0		0		0	93	19-20	1
	20-21	0,00	0	0,00	0	0,00	0	0,00	0		0		0	0	20-21	1
	21-22	0,00	0	0,00	0	0,00	0	0,00	0		0		0	0	21-22	1
	22-23	0,00	0	0,00	0	0,00	0	0,00	0		0		0	0	22-23	1
	23-24	0,00	0	0,00		0,00	0		0		0		0	0	23-24	1
	Summe	100,00	1.428	100,00	44	100,00	15	0,00	0	0,00	0	0,00	0	1.487	Summe	1
	Komment.	EKZ 2	2007	FH Köl	n 2001	EKZ	2010	Aldi	2003					307	Maximum	1

Verkehrsfluss-Diagramm

Datei : ANLAYS~1.AMP

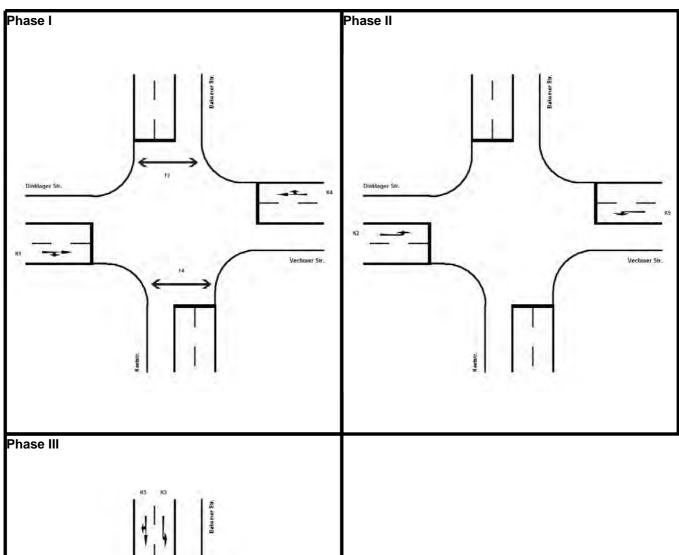

Projekt: VUS Famila in Lohne (216213)

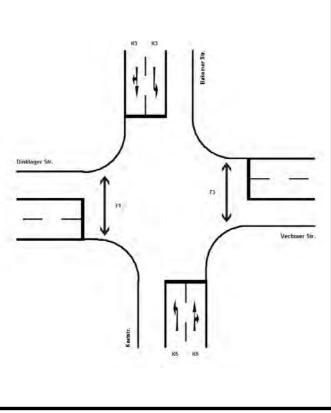
Knoten: KP 01 Dinklager Str./Vechtaer Str./Keetstr./Bakumer Str., Analyse

Stunde: Spitzenstunde

Fahrzeuge

Zufahrt 1 : Dinklager Str. Zufahrt 2 : Keetstr. Zufahrt 3 : Vechtaer Str. Zufahrt 4 : Bakumer Str.


Übersicht Phaseneinteilung


Datei : ANLAYS~1.AMP

Projekt: VUS Famila in Lohne (216213) Knoten: KP 01 Dinklager Str./Vechtaer Str./Keetstr./Bakumer Str., Analyse

Stunde: Spitzenstunde

Signalzeitenplan

Datei : ANLAYS~1.AMP

Projekt: VUS Famila in Lohne (216213)

Knoten: KP 01 Dinklager Str./Vechtaer Str./Keetstr./Bakumer Str., Analyse

10

=Rot/Gelb,

Stunde: Spitzenstunde

F3

F4

36

57

48

18

-=Rot,

12

21

0

=Gelb,

20

30

=Grünpfeil,

40

50

=Gelbblinker,

60

=Dunkel

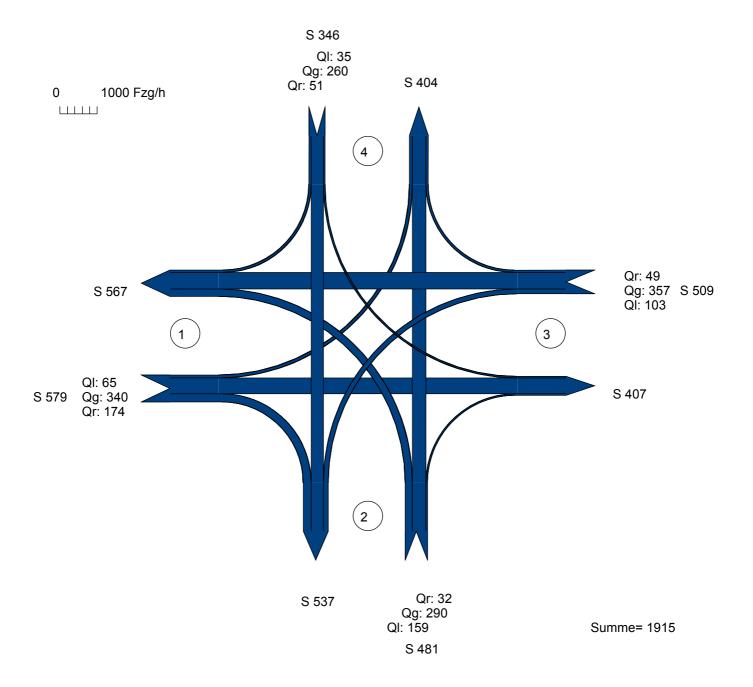
					Knotenpunkt	mit Lichtsign	nalanlage						
Formi	blatt 1					usgangsdate							
	Projekt:	VUS Famila	in Lohne (21	16213)			Stadt	•					
 	-				eetstr./Bakun	ner Str., Anal							
Z	Zeitabschnitt:	KP 01 Dinklager Str./Vechtaer Str./Keetstr./Bakumer Str., Analyse Datum: 26.01.2017 Spitzenstunde Bearbeiter:											
Umlaufzeit	t _U : 60 [s]												
Kfz-Verkel	hrsströme												
Nr.	q_{LV}	q _{Lkw+Bus}	q_{LkwK}	q_{Kfz}	q_{SV}	f _{SV}		Anzahl	Misch-	bedingt			
INI.	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[-]		Fahrstreifen	fahrstreifen	verträglich			
1	59	0	8			1,179		1	nein	ja			
2	301	0	29			1,132		1	ja	nein			
3	165	0	1			1,009		1	ja	nein			
4	149	0	3			1,030		1	nein	ja			
5	269	0	0			1,000		1	ja	nein			
6	29	0	0			1,000		1	ja	ja			
7	96	0	1			1,015		1	nein	ja			
8	333	0	22			1,093		1	ja	nein			
9	41	0	4			1,133		1	ja	ja			
10	27	0	4			1,194		1	nein	ja			
11	237	0	1			1,006		1	ja	nein			
12	49	0	7			1,188		1	ja	ja			
Kfz-Fahrst	treifen												
Zufahrt	Fahrt-	Nie	Nr.	L	b	f _b	R	f_R	s	f _s	L _{LA} /L _{RA}		
Zulaliit	richtung	INI.	[m]	[m]	[-]	[m]	[-]	[%]	[-]	[m]			
1	rechts	11		>= 3,00	1,000	15,00	1,075	0,0	1,000				
1	gerade	11		>= 3,00	1,000	-	1,000	0,0	1,000				
1	links	12		>= 3,00	1,000	20,00	1,000	0,0	1,000	21			
2	rechts	21		>= 3,00	1,000	12,00	1,120	0,0	1,000	28			
2	gerade	21		>= 3,00	1,000	-	1,000	0,0	1,000				
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	21			
3	rechts	31		>= 3,00	1,000	15,00	1,075	0,0	1,000	24			
3	gerade	31		>= 3,00	1,000	-	1,000	0,0	1,000				
3	links	32		>= 3,00	1,000	20,00	1,000	0,0	1,000	23			
4	rechts	41		>= 3,00	1,000	15,00	1,075	0,0	1,000	25			
4	gerade	41		>= 3,00	1,000	-	1,000	0,0	1,000				
4	links	42		>= 3,00	1,000	20,00	1,000	0,0	1,000	22			
Fußgänge	r-/Radfahrer	furten		,									
	Bez.	q_{Fg}	q_Rad	t _{vor}	1. Furt	2. Furt	3. Furt	4. Furt					
Zufahrt	Signalgr.	[Fg/h]	[Rad/h]	[s]	Länge	Länge	Länge	Länge					
					[m]	[m]	[m]	[m]					
1	F1	100	0		11,10								
2	F4	100	0		11,60								
3	F3	100	0		10,60								
4	F2	100	0		11,00								

Forn	nblatt 2				Knotenpun	kt mit Lichtsi	gnalanlage			
	IIDIALL Z			Berechn	ung der Grui	ndlagendater	für den Kfz-	-Verkehr		
		VUS Famila						Stadt:		
				mer Str., Analyse Datum: 26.01.2017						
	Zeitabschnitt:							Bearbeiter:		
Kfz-Verke	ehrsströme -		(strombezo							
Nr.	Bez. SG	t _{B,i} [s]	q _{S,i} [Kfz/h]	t _{F,i} [s]	C _{0,i} [Kfz/h]	C _{D,i} [Kfz/h]	C _{PW,i} [Kfz/h]	C _{GF,i} [Kfz/h]	C _{LA,i} [Kfz/h]	C _{RA,i} [Kfz/h]
1	K2	2,122	1697	[s] 5	170	[KIZ/II]	[KIZ/II]	[KIZ/II]	[KIZ/II]	[KIZ/II]
2	K1	2,037	1767	20	619					
3	K1	1,952	1844	20	645					
4	K6	1,853	1943	13	453	65	204		269	
5	K6	1,800	2000	13	467		201			
6	K6	2,016	1786	13	417					35
7	K5	1,828	1969	5	197					
8	K4	1,967	1830	18	580					
9	K4	2,193	1642	18	520					43
10	K3	2,148	1676	12	363	36	184		220	
11	K3	1,811	1988	12	431					
12	K3	2,298	1567	12	339					25
Kfz-Verke	ehrsströme -	Kapazitäten	(fahrstreife	nbezogen)						
	q _j	q_G	q_{RA}	q _{LA}	n _k	N _{MS,90,i}	C _{K,j}	C _{M,i}	C _j	
Nr.	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	
11	496	330	166			15,863		627		
12	67			67		3,442			170	
21	298	269	29			9,854		452		
22	152			152		6,177			269	
31	400	355	45			12,381		558		
32	97			97		4,564			197	
41	294	238	56			11,582		381		
42	31			31		1,802			220	
	ĺ									

rormi	blatt 3					t mit Lichtsig						
					Berechnung	der Verkehr	squalitäten					
	-	: VUS Famila										
	•	: <u>KP 01 Dinkl</u>	•	chtaer Str./Ke	eetstr./Bakum	er Str., Analy	/se					
		: Spitzenstun						Bearbeiter:	Stadt: Datum: 26.01.2017 earbeiter: L 95,j			
Kfz-Verkel	nrsströme -	Verkehrsqu	alitäten (fah	rstreifenbez	ogen)							
Nr.	Bez.	Ströme	q_j	$\mathbf{x}_{\mathbf{j}}$	$f_{A,j}$	$N_{GE,j}$	$N_{MS,j}$	L _{95,j}	$t_{W,j}$	QSV		
IVI.	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]		
11	K1	2, 3	496	0,791	0,35	2,976	10,407	104	34,6	В		
12	K2	1	67	0,394	0,10	0,378	1,424	24	33,3	В		
21	K6	5, 6	298	0,659	0,23	1,275	5,786	59	31,2	В		
22	K6	4	152	0,565	0,14	0,800	3,167	38		В		
31	K4	8, 9	400	0,717	0,31	1,773	7,691			В		
32	K5	7	97	0,492	0,10	0,578	2,108			C		
41	K3	11, 12	294	0,772	0,10	2,448	7,081			C		
						+	0,549					
42	K3	10	31	0,141	0,13	0,092	0,549	13	24,0	В		
Gesamt			1835						34,7			
Fußgänge	r- /Radfahre											
	i-/itaaiaiiit	erfurten										
7	Bez.		q _{Rad}	Anzahl	t _{W,max}					QSV		
Zufahrt		erfurten q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max}					QSV [-]		
Zufahrt 1	Bez.	q _{Fg}										
1	Bez. SG	q _{Fg} [Fg/h]	[Rad/h]	Furten 1	[s]					[-] C		
1 2	Bez. SG F1 F4	q _{Fg} [Fg/h] 100	[Rad/h] 0 0	Furten 1	[s] 48 39					[-] C B		
1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	[Rad/h] 0 0	Furten 1 1 1	[s] 48 39 48				t _{W,j} [s] 34,6 33,3 31,2 34,9 29,8 36,1 45,8 24,6	[-] C B C		
1 2	Bez. SG F1 F4	q _{Fg} [Fg/h] 100	[Rad/h] 0 0	Furten 1	[s] 48 39					[-] C B		
1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	[Rad/h] 0 0	Furten 1 1 1	[s] 48 39 48					[-] C B C		
1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	[Rad/h] 0 0	Furten 1 1 1	[s] 48 39 48					[-] C B C		
1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	[Rad/h] 0 0	Furten 1 1 1	[s] 48 39 48					[-] C B C		
1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	[Rad/h] 0 0	Furten 1 1 1	[s] 48 39 48					[-] C B C		
1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	[Rad/h] 0 0	Furten 1 1 1	[s] 48 39 48					[-] C B C		
1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	[Rad/h] 0 0	Furten 1 1 1	[s] 48 39 48					[-] C B C		
1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	[Rad/h] 0 0	Furten 1 1 1	[s] 48 39 48					[-] C B C		
1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	[Rad/h] 0 0	Furten 1 1 1	[s] 48 39 48					[-] C B C		
1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	[Rad/h] 0 0	Furten 1 1 1	[s] 48 39 48					[-] C B C		
1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	[Rad/h] 0 0	Furten 1 1 1	[s] 48 39 48					[-] C B C		
1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	[Rad/h] 0 0	Furten 1 1 1	[s] 48 39 48					[-] C B C		
1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	[Rad/h] 0 0	Furten 1 1 1	[s] 48 39 48					[-] C B C		
1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	[Rad/h] 0 0	Furten 1 1 1	[s] 48 39 48					[-] C B C		
1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	[Rad/h] 0 0	Furten 1 1 1	[s] 48 39 48					[-] C B C		

Verkehrsfluss-Diagramm

Datei : PR4144~1.AMP


Projekt: VUS Famila in Lohne (216213)

Knoten: KP 01 Dinklager Str./Vechtaer Str./Keetstr./Bakumer Str., Prognose Variante 1 (1 Ausfahrt)

Stunde: Spitzenstunde

Fahrzeuge

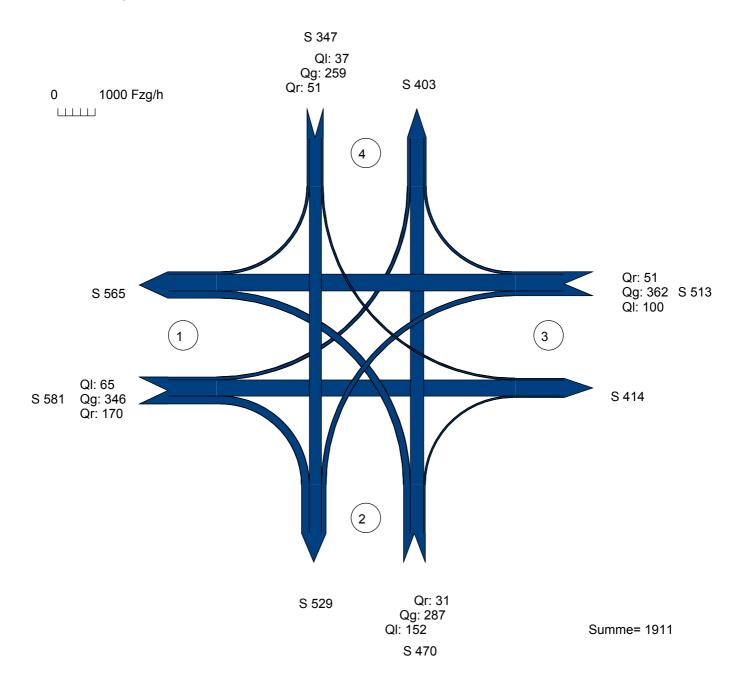
Zufahrt 1 : Dinklager Str. Zufahrt 2 : Keetstr. Zufahrt 3 : Vechtaer Str. Zufahrt 4 : Bakumer Str.

					Knotenpunkt	mit Lichtsiar	nalanlage						
Formb	olatt 1				-	usgangsdate							
	Projekt:	VUS Famila	in Lohne (21	16213)		<u> </u>	Stadt:						
K	-				eetstr./Bakun	ner Str., Prog	noseD <i>é</i> atriam	1 2 610(11. 20 0/15 7 2	ahrt)				
Z	eitabschnitt:	KP 01 Dinklager Str./Vechtaer Str./Keetstr./Bakumer Str., PrognoseDéaniam <u>12610(11.20057</u> ahrt) Spitzenstunde Bearbeiter:											
Umlaufzeit	t _∪ : 60 [s]												
Kfz-Verkeh	rsströme												
Nr.	q_LV	q _{Lkw+Bus}	q_{LkwK}	q_{Kfz}	q_{SV}	f_{SV}		Anzahl	Misch-	bedingt			
IVI.	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[-]		Fahrstreifen	fahrstreifen	verträglich			
1	57	0	8			1,185		1	nein	ja			
2	311	0	29			1,128		1	ja	nein			
3	173	0	1			1,009		1	ja	nein			
4	156	0	3			1,028		1	nein	ja			
5	290	0	0			1,000		1	ja	nein			
6	32	0	0			1,000		1	ja	ja			
7	102	0	1			1,015		1	nein	ja			
8	335	0	22			1,092		1	ja	nein			
9	45	0	4			1,122		1	ja	ja			
10	31	0	4			1,171		1	nein	ja			
11	259	0	1			1,006		1	ja	nein			
12	44	0	7			1,206		11	ja	ja			
Kfz-Fahrst													
Zufahrt	Fahrt-	Nr.	L	b	f _b	R	f _R	S	f _s	L _{LA} /L _{RA}			
	richtung	4.4	[m]	[m]	[-]	[m]	[-]	[%]	[-]	[m]			
1	rechts	11		>= 3,00	1,000	15,00	1,075	0,0	1,000				
1	gerade	11		>= 3,00	1,000	-	1,000	0,0	1,000	0.4			
1	links	12		>= 3,00	1,000	20,00	1,000	0,0	1,000	21			
2	rechts	21		>= 3,00	1,000	12,00	1,120	0,0	1,000	28			
2	gerade	21		>= 3,00	1,000	-	1,000	0,0	1,000	0.4			
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	21			
3	rechts	31		>= 3,00	1,000	15,00	1,075	0,0	1,000	24			
3	gerade links	31 32		>= 3,00 >= 3,00	1,000 1,000	20,00	1,000 1,000	0,0	1,000 1,000	23			
4	rechts	41		>= 3,00	1,000	15,00	1,000	0,0	1,000	25			
4	gerade	41		>= 3,00	1,000	15,00	1,075	0,0	1,000	23			
4	links	41		>= 3,00	1,000	20,00	1,000	0,0	1,000	22			
	r-/Radfahrer			- 0,00	1,000	20,00	1,000	0,0	1,000				
	Bez.	q _{Fg}	q _{Rad}	t _{vor}	1. Furt	2. Furt	3. Furt	4. Furt					
Zufahrt	Signalgr.	ч⊦ց [Fg/h]	Rad/h]	[s]	Länge	Länge	Länge	Länge					
_3.5	gridigi.	ני אַיין	[[~]	[m]	[m]	[m]	[m]					
1	F1	100	0		11,10	6.43	1111	F3					
2	F4	100	0		11,60								
3	F3	100	0		10,60								
4	F2	100	0		11,00								

Forn	nblatt 2				Knotenpun	kt mit Lichtsi	gnalanlage			
	iibiatt Z			Berechn	ung der Grui	ndlagendater	für den Kfz-	-Verkehr		
	-	VUS Famila						Stadt:		
	Knotenpunkt:		-	chtaer Str./Ke	eetstr./Bakun	ner Str., Prog	nose Varian			
	Zeitabschnitt:							Bearbeiter:		
Kfz-Verke	ehrsströme -		(strombezo	gen)						
Nr.	Bez.	t _{B,i}	$q_{S,i}$	t _{F,i}	C _{0,i}	C _{D,i}	C _{PW,i}	$C_{GF,i}$	$C_{LA,i}$	$C_{RA,i}$
	SG	[S]	[Kfz/h]	[s]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]
1	K2	2,132	1689	5	169					
2	K1	2,030	1773	20	621					
3 4	K1 K6	1,952 1,851	1844	20 13	645 454	64	204		268	
5	K6	1,800	1945 2000	13	467	04	204		200	
6	K6	2,016	1786	13	417					35
7	K5	1,826	1972	5	197					
8	K4	1,966	1831	18	580					
9	K4	2,172	1657	18	525					430
10	K3	2,109	1707	12	370	24	188		212	
11	K3	1,810	1989	12	431					
12	K3	2,333	1543	12	334					25
		,								
Kfz-Verke	ehrsströme -	Kapazitäten	(fahrstreife	nbezogen)						
	q _j	q_G	q _{RA}	q _{LA}	n _k	N _{MS,90,i}	C _{K,j}	C _{M,j}	C _i	
Nr.	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	
11	514	340	174			17,236		629		
12	65			65		3,360			169	
21	322	290	32			11,015		452		
22	159			159		6,514			268	
31	406	357	49			12,688		558		
32	103			103		4,848			197	
41	311	260	51			12,870		386		
42	35			35		1,977			212	

Projekt: VUS Famila in Lohne (216213) Stadt: Knotenpunkt: KP 01 Dinklager Str./Vechtaer Str./Keetstr./Bakumer Str., Prognose Variante 1 (Datusfapello) 01.2017 Zeitabschnitt: Spitzenstunde	Form	blatt 3					kt mit Lichtsig				
Knotenpunkt: KP 01 Dinklager Str./Vechtaer Str./Keetstr/Bakumer Str., Prognose Variante 1 (Datastra@6)01.2017 Zelitabschnitt: Spitzenstunde						Berechnung	der Verkehr	squalitäten			
Nr. Bez. Ströme Ströme											
Kfz-Verkehrsströme - Verkehrsqualitäten (fahrstreifenbezogen) Nr. Bez. SG Ströme [Kfz/h] qj xj FA,j FA,j FA,j FA,j FA,j FA,j FA,j FA,				-	chtaer Str./Ke	eetstr./Bakum	ner Str., Prog	nose Varian			
Nr. Bez. SG Ströme SG qi [Kfz/h] xj [-] [-] fA,j [-] [Kfz] NGE,j [Kfz] NMS,j [Kfz] L95,j [M] tW,j [S] O 111 K1 2,3 514 0,817 0,35 3,702 11,501 112 38,9 12 K2 1 65 0,385 0,10 0,362 1,376 24 33,0 21 K6 5,6 322 0,712 0,23 1,708 6,653 66 34,9 22 K6 4 159 0,593 0,14 0,909 3,397 40 36,5 31 K4 8,9 406 0,728 0,31 1,894 7,927 83 30,7 32 K5 7 103 0,523 0,10 0,659 2,289 30 37,7 41 K3 11,12 311 0,806 0,20 3,128 8,066 80 51,9 42 K3 10 35 <			•						Bearbeiter:		
Nr. SG [Kfz/h] [-] [-] [Kfz] [Kfz] [Kfz] [m] [s] 11 K1 2,3 514 0,817 0,35 3,702 11,501 112 38,9 12 K2 1 65 0,385 0,10 0,362 1,376 24 33,0 21 K6 5,6 322 0,712 0,23 1,708 6,653 66 34,9 22 K6 4 159 0,593 0,14 0,909 3,397 40 36,5 31 K4 8,9 406 0,728 0,31 1,894 7,927 83 30,7 32 K5 7 103 0,523 0,10 0,659 2,289 30 37,7 41 K3 11,12 311 0,806 0,20 3,128 8,066 80 51,9 42 K3 10 35 0,165 0,12 0,111 0,	Kfz-Verkel										
SG	Nr.		Ströme	,		-	,			-	QSV
12											[-]
21	11	K1	2, 3	514	0,817	0,35	3,702	11,501	112		С
22	12						0,362		24		В
31	21	K6	5, 6	322	0,712	0,23	1,708	6,653	66	34,9	В
32 K5 7 103 0,523 0,10 0,659 2,289 30 37,7 41 K3 11, 12 311 0,806 0,20 3,128 8,066 80 51,9 42 K3 10 35 0,165 0,12 0,111 0,632 14 25,4 43 44 45,4 45,4 44 45 45 45,4 54 54 54 54,4 55 57 103 0,523 0,10 0,659 2,289 30 37,7 41 K3 11, 12 311 0,806 0,20 3,128 8,066 80 51,9 42 K3 10 35 0,165 0,12 0,111 0,632 14 25,4 43 44 45 45 45 44 45 45	22	K6	4	159	0,593	0,14	0,909	3,397	40	36,5	С
Harmonia Harmonia	31	K4	8, 9	406	0,728	0,31	1,894	7,927	83	30,7	В
42 K3 10 35 0,165 0,12 0,111 0,632 14 25,4 Gesamt 1915 37,9 Fußgänger-/Radfahrerfurten Zufahrt Bez. qFg (Fg/h) [Rad/h) Furten [s] Cufahrt Cufahrt Bez. qFg (Fg/h) [Rad/h) Furten [s] Cufahrt Cufahrt 3 G (Fg/h) [Rad/h) Furten [s] Cufahrt 3 F3 100 0 1 48 48 Cufahrt 3 F3 100 0 1 48 4	32	K5	7	103	0,523	0,10	0,659	2,289	30	37,7	С
Gesamt 1915 37,9 Fußgänger-/Radfahrerfurten Zufahrt Bez. Greg [Fg/h] [Rad/h] Furten [s] GC 1 F1 100 0 1 48 2 F4 100 0 1 48 3 F3 100 0 1 48	41	K3	11, 12	311	0,806	0,20	3,128	8,066	80	51,9	D
Fußgänger- /Radfahrerfurten Zufahrt Bez. SG [Fg/h] [Rad/h] [Rad/h] Furten [S] QFg [Rad/h] Furten [S] CG [Fg/h] [Rad/h] SG CG [Fg/h] [Rad/h] SG CG [Fg/h] SG CG [Fg/	42	K3	10	35	0,165	0,12	0,111	0,632	14	25,4	В
Fußgänger- /Radfahrerfurten Zufahrt Bez. SG [Fg/h] [Rad/h] [Rad/h] Furten [S] QFg [Fg/h] [Rad/h] Furten [S] CG [Fg/h] [Rad/h] Furten [S] 1 F1 100 0 1 48											
Fußgänger- /Radfahrerfurten Zufahrt Bez. SG [Fg/h] [Rad/h] [Rad/h] Furten [s] QC (Fg/h] [Rad/h] Furten [s] CC (Fg/h] [Rad/h] Furten [s] 1 F1 100 0 1 48											
Fußgänger- /Radfahrerfurten Zufahrt Bez. SG [Fg/h] [Rad/h] [Rad/h] Furten [s] QC (Fg/h] [Rad/h] Furten [s] CC (Fg/h] [Rad/h] Furten [s] 1 F1 100 0 1 48											
Fußgänger- /Radfahrerfurten Zufahrt Bez. SG [Fg/h] [Rad/h] [Rad/h] Furten [s] QRad [Fg/h] [Rad/h] Furten [s] LW,max [s] CM 1 F1 100 0 1 48											
Fußgänger- /Radfahrerfurten Zufahrt Bez. SG [Fg/h] [Rad/h] [Rad/h] Furten [s] QRad [Fg/h] [Rad/h] Furten [s] LW,max [s] CM 1 F1 100 0 1 48											
Fußgänger- /Radfahrerfurten Zufahrt Bez. SG [Fg/h] [Rad/h] [Rad/h] Furten [s] QC (Fg/h] [Rad/h] Furten [s] CC (Fg/h] [Rad/h] Furten [s] 1 F1 100 0 1 48											
Fußgänger- /Radfahrerfurten Zufahrt Bez. SG [Fg/h] qFg [Rad/h] Anzahl Furten Furten [s] tW,max [s] CG 1 F1 100 0 1 48	Gesamt			1915						37.9	
Zufahrt Bez. SG qFg [Fg/h] qRad [Rad/h] Anzahl Furten Furten [s] tw,max [s] Common State of St	Ocsami			1010						07,0	
Zufahrt Bez. SG q _{Fg} [Fg/h] q _{Rad} [Rad/h] Anzahl Furten Furten [s] t _{W,max} [s] Company (state of the content of the co	Fußgänger	r- /Padfahre	orfurton								
Zufahrt SG [Fg/h] [Rad/h] Furten [s] 1 F1 100 0 1 48 2 F4 100 0 1 39 3 F3 100 0 1 48	T disgarige			O	Δnzahl	t					QSV
1 F1 100 0 1 48 2 F4 100 0 1 39 3 F3 100 0 1 48	Zufahrt										[-]
2 F4 100 0 1 39 3 F3 100 0 1 48	1										C
3 F3 100 0 1 48											В
											С
	4	F2	100	0	1	41					С
Gesamtbewertung:											

Datei : PROG-V~1.AMP


Projekt: VUS Famila in Lohne (216213)

Knoten: KP 01 Dinklager Str./Vechtaer Str./Keetstr./Bakumer Str., Prognose Variante 2 (2 Ausfahrten)

Stunde: Spitzenstunde

Fahrzeuge

Zufahrt 1 : Dinklager Str. Zufahrt 2 : Keetstr. Zufahrt 3 : Vechtaer Str. Zufahrt 4 : Bakumer Str.

			Knotenpunkt mit Lichtsignalanlage										
Formb	olatt 1				-	usgangsdate							
	Projekt:	VUS Famila	in Lohne (21	16213)		<u> </u>	Stadt:						
k	=		ager Str./Ved		eetstr./Bakun	ner Str., Prog	noseD <i>é</i> atriam	t <u>2620(2.240/15</u> 7)	ahrten)				
Z	eitabschnitt:	Spitzenstun	de				Bearbeiter:						
Umlaufzeit	t _∪ : 60 [s]												
Kfz-Verkeh	rsströme												
Nr.	q_LV	q _{Lkw+Bus}	q_{LkwK}	q_{Kfz}	q_{SV}	f_{SV}		Anzahl	Misch-	bedingt			
	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[-]		Fahrstreifen	fahrstreifen	verträglich			
1	57	0	8			1,185		1	nein	ja			
2	317	0	29			1,126		1	ja	nein			
3	169	0	1			1,009		1	ja	nein			
4	149	0	3			1,030		1	nein	ja			
5	287	0	0			1,000		1	ja	nein			
6	31	0	0			1,000		1	ja	ja			
7	99	0	1			1,015		1	nein	ja			
8	340	0	22			1,091		1	ja	nein			
9	47	0	4			1,118		1	ja	ja			
10	33	0	4			1,162		1	nein	ja			
11	258	0	1			1,006		1	ja	nein			
12	44	0	7			1,206		11	ja	ja			
Kfz-Fahrst									I .				
Zufahrt	Fahrt-	Nr.	L	b	f _b	R	f _R	S	f _s	L _{LA} /L _{RA}			
	richtung		[m]	[m]	[-]	[m]	[-]	[%]	[-]	[m]			
1	rechts	11		>= 3,00	1,000	15,00	1,075	0,0	1,000				
1	gerade	11		>= 3,00	1,000	-	1,000	0,0	1,000	0.4			
1	links	12		>= 3,00	1,000	20,00	1,000	0,0	1,000	21			
2	rechts	21		>= 3,00	1,000	12,00	1,120	0,0	1,000	28			
2	gerade	21		>= 3,00	1,000	-	1,000	0,0	1,000	0.4			
3	links	22 31		>= 3,00	1,000	20,00	1,000	0,0	1,000 1,000	21 24			
	rechts	31		>= 3,00 >= 3,00	1,000 1,000	15,00	1,075 1,000	0,0	1,000	24			
3	gerade links	32		>= 3,00	1,000	20,00	1,000	0,0	1,000	23			
4	rechts	41		>= 3,00	1,000	15,00	1,000	0,0	1,000	25			
4	gerade	41		>= 3,00	1,000	15,00	1,075	0,0	1,000	23			
4	links	42		>= 3,00	1,000	20,00	1,000	0,0	1,000	22			
	r-/Radfahrer			- 0,00	1,000	20,00	1,000	0,0	1,000				
	Bez.	q _{Fg}	q _{Rad}	t _{vor}	1. Furt	2. Furt	3. Furt	4. Furt					
Zufahrt	Signalgr.	ч⊦ց [Fg/h]	Rad/h]	[s]	Länge	Länge	Länge	Länge					
_3.5	gridigi.	ני אַיין	[[∼]	[m]	[m]	[m]	[m]					
1	F1	100	0		11,10	6.4	1111	F3					
2	F4	100	0		11,60								
3	F3	100	0		10,60								
4	F2	100	0		11,00								

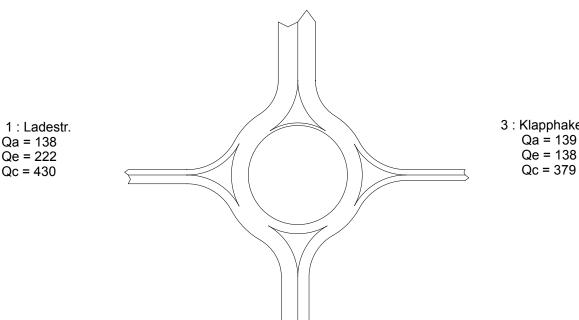
Form	blatt 2	Knotenpunkt mit Lichtsignalanlage Berechnung der Grundlagendaten für den Kfz-Verkehr												
1 01111	Diatt 2			Berechn	ung der Grui	ndlagendaten	ı für den Kfz-	-Verkehr						
		VUS Famila						Stadt:						
	Knotenpunkt		-	chtaer Str./Ke	etstr./Bakun	ner Str., Prog	nose Varian							
	Zeitabschnitt	-						Bearbeiter:						
Kfz-Verke	hrsströme -		(strombezo	gen)	1	1			ı					
Nr.	Bez.	t _{B,i}	q _{S,i}	t _{F,i}	C _{0,i}	C _{D,i}	C _{PW,i}	C _{GF,i}	C _{LA,i}	C _{RA,i}				
1	SG K2	[s] 2,132	[Kfz/h] 1689	[s] 5	[Kfz/h] 169	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]				
2	K1	2,132	1777	20	622									
3	K1	1,952	1844	20	645									
4	K6	1,853	1943	13	453	64	204		268					
-	K6	1,800	2000	13	467	04	204		200					
6	K6	2,016	1786	13	417					38				
7	K5	1,827	1970	5	197									
8	K4	1,964	1833	18	580									
9	K4	2,163	1664	18	527					41				
10	K3	2,092	1721	12	373	24	189		213					
11	K3	1,810	1989	12	431									
12	K3	2,333	1543	12	334					30:				
							I							
Kfz-Verke	hrsströme -	Kapazitäten	(fahrstreife	nbezogen)										
Kfz-Verke Nr.	hrsströme - q _j [Kfz/h]	Kapazitäten q _G [Kfz/h]	(fahrstreife q _{RA} [Kfz/h]	nbezogen) q _{LA} [Kfz/h]	n _k [Kfz]	N _{MS,90,j} [Kfz/h]	C _{K,j} [Kfz/h]	C _{M,j} [Kfz/h]	C _j [Kfz/h]					
	q _j	q_G	q _{RA}	q_{LA}				, ,						
Nr.	q _j [Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]	q_{LA}		[Kfz/h]		[Kfz/h]						
Nr. 11	q _j [Kfz/h] 516	q _G [Kfz/h]	q _{RA} [Kfz/h]	q _{LA} [Kfz/h]		[Kfz/h] 17,423		[Kfz/h]	[Kfz/h]					
Nr. 11 12	q _j [Kfz/h] 516 65	q _G [Kfz/h] 346	q _{RA} [Kfz/h] 170	q _{LA} [Kfz/h]		[Kfz/h] 17,423 3,360		[Kfz/h] 629	[Kfz/h]					
Nr. 11 12 21	q _j [Kfz/h] 516 65 318	q _G [Kfz/h] 346	q _{RA} [Kfz/h] 170	q _{LA} [Kfz/h]		[Kfz/h] 17,423 3,360 10,670		[Kfz/h] 629	[Kfz/h]					
Nr. 11 12 21 22	q _j [Kfz/h] 516 65 318 152	q _G [Kfz/h] 346	q _{RA} [Kfz/h] 170	q _{LA} [Kfz/h]		[Kfz/h] 17,423 3,360 10,670 6,190		[Kfz/h] 629 458	[Kfz/h]					
Nr. 11 12 21 22 31	q _j [Kfz/h] 516 65 318 152 413	q _G [Kfz/h] 346	q _{RA} [Kfz/h] 170	q _{LA} [Kfz/h] 65		[Kfz/h] 17,423 3,360 10,670 6,190 13,249		[Kfz/h] 629 458	[Kfz/h] 169 268					
Nr. 11 12 21 22 31 32	q _j [Kfz/h] 516 65 318 152 413	q _G [Kfz/h] 346 287	q _{RA} [Kfz/h] 170 31	q _{LA} [Kfz/h] 65		[Kfz/h] 17,423 3,360 10,670 6,190 13,249 4,704		[Kfz/h] 629 458	[Kfz/h] 169 268					
Nr. 11 12 21 22 31 32 41	q _j [Kfz/h] 516 65 318 152 413 100 310	q _G [Kfz/h] 346 287	q _{RA} [Kfz/h] 170 31	q _{LA} [Kfz/h] 65 152		[Kfz/h] 17,423 3,360 10,670 6,190 13,249 4,704 11,766		[Kfz/h] 629 458	[Kfz/h] 169 268					
Nr. 11 12 21 22 31 32 41	q _j [Kfz/h] 516 65 318 152 413 100 310	q _G [Kfz/h] 346 287	q _{RA} [Kfz/h] 170 31	q _{LA} [Kfz/h] 65 152		[Kfz/h] 17,423 3,360 10,670 6,190 13,249 4,704 11,766		[Kfz/h] 629 458	[Kfz/h] 169 268					
Nr. 11 12 21 22 31 32 41	q _j [Kfz/h] 516 65 318 152 413 100 310	q _G [Kfz/h] 346 287	q _{RA} [Kfz/h] 170 31	q _{LA} [Kfz/h] 65 152		[Kfz/h] 17,423 3,360 10,670 6,190 13,249 4,704 11,766		[Kfz/h] 629 458	[Kfz/h] 169 268					
Nr. 11 12 21 22 31 32 41	q _j [Kfz/h] 516 65 318 152 413 100 310	q _G [Kfz/h] 346 287	q _{RA} [Kfz/h] 170 31	q _{LA} [Kfz/h] 65 152		[Kfz/h] 17,423 3,360 10,670 6,190 13,249 4,704 11,766		[Kfz/h] 629 458	[Kfz/h] 169 268					
Nr. 11 12 21 22 31 32 41	q _j [Kfz/h] 516 65 318 152 413 100 310	q _G [Kfz/h] 346 287	q _{RA} [Kfz/h] 170 31	q _{LA} [Kfz/h] 65 152		[Kfz/h] 17,423 3,360 10,670 6,190 13,249 4,704 11,766		[Kfz/h] 629 458	[Kfz/h] 169 268					
Nr. 11 12 21 22 31 32 41	q _j [Kfz/h] 516 65 318 152 413 100 310	q _G [Kfz/h] 346 287	q _{RA} [Kfz/h] 170 31	q _{LA} [Kfz/h] 65 152		[Kfz/h] 17,423 3,360 10,670 6,190 13,249 4,704 11,766		[Kfz/h] 629 458	[Kfz/h] 169 268					
Nr. 11 12 21 22 31 32 41	q _j [Kfz/h] 516 65 318 152 413 100 310	q _G [Kfz/h] 346 287	q _{RA} [Kfz/h] 170 31	q _{LA} [Kfz/h] 65 152		[Kfz/h] 17,423 3,360 10,670 6,190 13,249 4,704 11,766		[Kfz/h] 629 458	[Kfz/h] 169 268					
Nr. 11 12 21 22 31 32 41	q _j [Kfz/h] 516 65 318 152 413 100 310	q _G [Kfz/h] 346 287	q _{RA} [Kfz/h] 170 31	q _{LA} [Kfz/h] 65 152		[Kfz/h] 17,423 3,360 10,670 6,190 13,249 4,704 11,766		[Kfz/h] 629 458	[Kfz/h] 169 268					
Nr. 11 12 21 22 31 32 41	q _j [Kfz/h] 516 65 318 152 413 100 310	q _G [Kfz/h] 346 287	q _{RA} [Kfz/h] 170 31	q _{LA} [Kfz/h] 65 152		[Kfz/h] 17,423 3,360 10,670 6,190 13,249 4,704 11,766		[Kfz/h] 629 458	[Kfz/h] 169 268					
Nr. 11 12 21 22 31 32 41	q _j [Kfz/h] 516 65 318 152 413 100 310	q _G [Kfz/h] 346 287	q _{RA} [Kfz/h] 170 31	q _{LA} [Kfz/h] 65 152		[Kfz/h] 17,423 3,360 10,670 6,190 13,249 4,704 11,766		[Kfz/h] 629 458	[Kfz/h] 169 268					
Nr. 11 12 21 22 31 32 41	q _j [Kfz/h] 516 65 318 152 413 100 310	q _G [Kfz/h] 346 287	q _{RA} [Kfz/h] 170 31	q _{LA} [Kfz/h] 65 152		[Kfz/h] 17,423 3,360 10,670 6,190 13,249 4,704 11,766		[Kfz/h] 629 458	[Kfz/h] 169 268					

Formi	blatt 3					t mit Lichtsig der Verkehr				
	Drojekt	⊥ t: <u>VUS Famila</u>	in Lohne (2)	16213)	berechnung	dei verkein	Squaiitateri	Stadt:		
ŀ	-	t: <u>KP 01 Dinkl</u>			eetstr./Bakum	er Str Prog	nose Variant			
		t: Spitzenstun						Bearbeiter:		
Kfz-Verkel	nrsströme -	Verkehrsqu	alitäten (fah	rstreifenbez	ogen)					
.	Bez.	Ströme	q _i	x _j	$f_{A,j}$	$N_{GE,j}$	N _{MS,j}	L _{95,j}	$t_{W,j}$	QSV
Nr.	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	K1	2, 3	516	0,820	0,35	3,808	11,650	114	39,6	С
12	K2	1	65	0,385	0,10	0,362	1,376	24	33,0	В
21	K6	5, 6	318	0,694	0,23	1,541	6,394	64	33,2	В
22	K6	4	152	0,567	0,14	0,807	3,176	38	35,0	С
31	K4	8, 9	413	0,748	0,30	2,160	8,359	87	32,9	В
32	K5	7	100	0,508	0,10	0,617	2,197	29	36,9	С
41	K3	11, 12	310	0,765	0,21	2,363	7,221	73	43,2	С
42	K3	10	37	0,174	0,12	0,118	0,670	14	25,5	В
Gesamt			1911						36,7	
Gesami			1911						30,7	
Fußgänge	r- /Radfahre	erfurten								
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max} [s]					QSV [-]
1	F1	100	0	1	48					С
2	F4	100	0	1	39					В
3	F3	100	0	1	48					С
4	F2	100	0	1	41					С
								Gesamti	pewertung:	С

Datei: KP02-A~1.KRS VUS Famila in Lohne Projekt:

Projekt-Nummer: 216213

Knoten: Keetstr. / Klapphakenstr. / Ladestr.


Stunde: Sph Analyse

1000 Fz / h

4 : Keetstr. (nördl.) Qa = 450

Qe = 501

Qc = 67

3: Klapphakenstr.

Qc = 379

2 : Keetstr. (südl.)

 $Qa = 4\dot{1}8$

Qe = 284

Qc = 234

Sum = 1145

alle Kraftfahrzeuge

Kapazität und mittlere Zeitverluste an Ausfahrten - mit Fußgängereinfluss Anlage 5.2

Datei : KP02-A~1.KRS
Projekt : VUS Famila in Lohne

Projekt-Nummer: 216213

Knoten: Keetstr. / Klapphakenstr. / Ladestr.

Stunde: Sph Analyse

Wartezeiten

		n-au	F+R	Kapazität	q-a-vorh	q-a-max	х	Reserve	mittl. Wz
	Name	-	/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	-	Pkw-E/h	S
1	Ladestr.	1	70	1200	140	1137	0,12	997	4
2	Keetstr. (südl.)	1	70	1200	419	1137	0,37	718	5
3	Klapphakenstr.	1	70	1200	140	1137	0,12	997	4
4	Keetstr. (nördl.)	1	70	1200	452	1137	0,40	685	5

Gesamter Verkehr Verkehr im Kreis

Abfluss über alle Ausfahrten : 1151 Pkw-E/h davon Kraftfahrzeuge : 1145 Fz/h

Summe aller Wartezeiten : 1,5 Fz-h/h Mittl. Wartezeit über alle Fz : 4,8 s pro Fz

Berechnungsverfahren:

Wartezeit : HBS 2009 + HBS 2015 = Akcelik, Troutbeck (1991) mit T = 3600

Fußgänger-Einfluss : Griffith (1981)

Kapazität, mittlere Wartezeit und Staulängen - mit Fußgängereinfluss Anlage 5.2

Datei: KP02-A~1.KRS
Projekt: VUS Famila in Lohne

Projekt-Nummer: 216213

Knoten: Keetstr. / Klapphakenstr. / Ladestr.

Stunde: Sph Analyse

Wartezeiten

		n-in	F+R	q-Kreis	q-e-vorh	q-e-max	Х	Reserve	Wz	QSV
	Name	-	/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	-	Pkw-E/h	s	-
1	Ladestr.	1	70	431	223	853	0,26	630	5,7	Α
2	Keetstr. (südl.)	1	70	235	285	1017	0,28	732	4,9	Α
3	Klapphakenstr.	1	70	380	140	895	0,16	755	4,8	Α
4	Keetstr. (nördl.)	1	70	68	503	1164	0,43	661	5,5	Α

Staulängen

		n-in	F+R	q-Kreis	q-e-vorh	q-e-max	L	L-95	L-99	QSV
	Name	-	/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	Fz	Fz	Fz	-
1	Ladestr.	1	70	431	223	853	0,2	1	2	Α
2	Keetstr. (südl.)	1	70	235	285	1017	0,3	1	2	Α
3	Klapphakenstr.	1	70	380	140	895	0,1	1	1	Α
4	Keetstr. (nördl.)	1	70	68	503	1164	0,5	2	3	Α

Gesamt-Qualitätsstufe: A

Gesamter Verkehr Verkehr im Kreis

Zufluss über alle Zufahrten : 1151 Pkw-E/h davon Kraftfahrzeuge : 1145 Fz/h

Summe aller Wartezeiten : 1,7 Fz-h/h Mittl. Wartezeit über alle Fz : 5,3 s pro Fz

Berechnungsverfahren:

Kapazität : Deutschland: HBS 2015

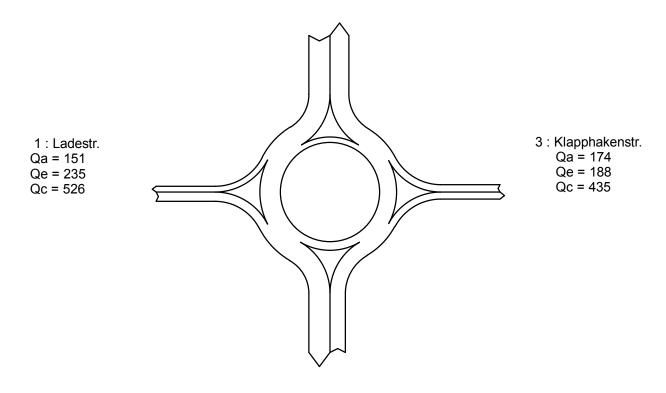
Wartezeit : HBS 2009 + HBS 2015 = Akcelik, Troutbeck (1991) mit T = 3600

Staulängen : Wu, 1997 Fußgänger-Einfluss : Stuwe, 1992 LOS - Einstufung : HBS (Deutschland)

Verkehrsfluss - Diagramm als Kreis

Datei: KP02-P~2.KRS
Projekt: VUS Famila in Lohne

Projekt-Nummer: 216213


Knoten: Keetstr. / Klapphakenstr. / Ladestr. Stunde: Sph Prognose Variante 1 (1 Ausfahrt)

0 1000 Fz / h

4 : Keetstr. (nördl.) Qa = 482

Qe = 536

Qc = 141

2 : Keetstr. (südl.)

Qa = 539

Qe = 387

Qc = 222

Sum = 1346

alle Kraftfahrzeuge

Kapazität und mittlere Zeitverluste an Ausfahrten - mit Fußgängereinfluss Anlage 5.2

Datei : KP02-P~2.KRS
Projekt : VUS Famila in Lohne

Projekt-Nummer: 216213

Knoten: Keetstr. / Klapphakenstr. / Ladestr.
Stunde: Sph Prognose Variante 1 (1 Ausfahrt)

Wartezeiten

		n-au	F+R	Kapazität	q-a-vorh	q-a-max	х	Reserve	mittl. Wz
	Name	-	/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	-	Pkw-E/h	s
1	Ladestr.	1	70	1200	153	1137	0,13	984	4
2	Keetstr. (südl.)	1	70	1200	540	1137	0,47	597	6
3	Klapphakenstr.	1	70	1200	175	1137	0,15	962	4
4	Keetstr. (nördl.)	1	70	1200	484	1137	0,43	653	6

Gesamter Verkehr Verkehr im Kreis

Abfluss über alle Ausfahrten : 1352 Pkw-E/h davon Kraftfahrzeuge : 1346 Fz/h

Summe aller Wartezeiten : 2,0 Fz-h/h Mittl. Wartezeit über alle Fz : 5,3 s pro Fz

Berechnungsverfahren:

Wartezeit : HBS 2009 + HBS 2015 = Akcelik, Troutbeck (1991) mit T = 3600

Fußgänger-Einfluss : Griffith (1981)

Kapazität, mittlere Wartezeit und Staulängen - mit Fußgängereinfluss Anlage 5.2

Datei: KP02-P~2.KRS
Projekt: VUS Famila in Lohne

Projekt-Nummer: 216213

Knoten: Keetstr. / Klapphakenstr. / Ladestr. Stunde: Sph Prognose Variante 1 (1 Ausfahrt)

Wartezeiten

		n-in	F+R	q-Kreis	q-e-vorh	q-e-max	Х	Reserve	Wz	QSV
	Name	-	/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	-	Pkw-E/h	s	-
1	Ladestr.	1	70	527	236	775	0,30	539	6,7	Α
2	Keetstr. (südl.)	1	70	223	388	1028	0,38	640	5,6	Α
3	Klapphakenstr.	1	70	436	190	849	0,22	659	5,5	Α
4	Keetstr. (nördl.)	1	70	142	538	1098	0,49	560	6,4	Α

Staulängen

		n-in	F+R	q-Kreis	q-e-vorh	q-e-max	L	L-95	L-99	QSV
	Name	-	/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	Fz	Fz	Fz	1
1	Ladestr.	1	70	527	236	775	0,3	1	2	Α
2	Keetstr. (südl.)	1	70	223	388	1028	0,4	2	3	Α
3	Klapphakenstr.	1	70	436	190	849	0,2	1	1	Α
4	Keetstr. (nördl.)	1	70	142	538	1098	0,7	3	4	Α

Gesamt-Qualitätsstufe: A

Gesamter Verkehr Verkehr im Kreis

Zufluss über alle Zufahrten: 1352Pkw-E/hdavon Kraftfahrzeuge: 1346Fz/hSumme aller Wartezeiten: 2,3Fz-h/hMittl. Wartezeit über alle Fz: 6,1s pro Fz

Berechnungsverfahren:

Kapazität : Deutschland: HBS 2015

Wartezeit : HBS 2009 + HBS 2015 = Akcelik, Troutbeck (1991) mit T = 3600

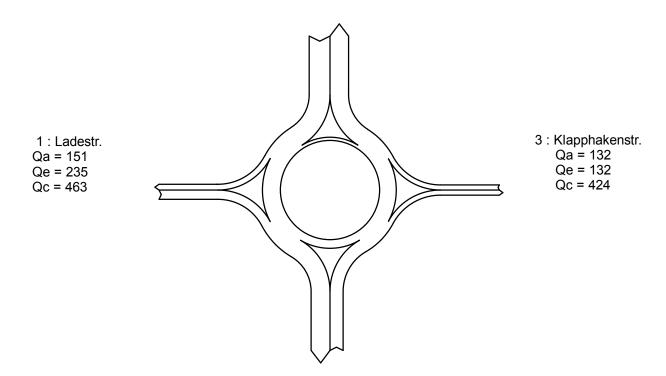
Staulängen : Wu, 1997 Fußgänger-Einfluss : Stuwe, 1992 LOS - Einstufung : HBS (Deutschland)

Verkehrsfluss - Diagramm als Kreis

Datei: KP02-P~1.KRS
Projekt: VUS Famila in Lohne

Projekt-Nummer: 216213

Knoten: Keetstr. / Klapphakenstr. / Ladestr. Stunde: Sph Prognose Variante 2 (2 Ausfahrten)


0 1000 Fz / h

4 : Keetstr. (nördl.)

Qa = 471

Qe = 529

Qc = 85

2 : Keetstr. (südl.)

Qa = 476

Qe = 334

Qc = 222

Sum = 1230

alle Kraftfahrzeuge

Kapazität und mittlere Zeitverluste an Ausfahrten - mit Fußgängereinfluss Anlage 5.2

Datei : KP02-P~1.KRS
Projekt : VUS Famila in Lohne

Projekt-Nummer: 216213

Knoten: Keetstr. / Klapphakenstr. / Ladestr.
Stunde: Sph Prognose Variante 2 (2 Ausfahrten)

Wartezeiten

		n-au	F+R	Kapazität	q-a-vorh	q-a-max	х	Reserve	mittl. Wz
	Name	-	/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	ı	Pkw-E/h	s
1	Ladestr.	1	70	1200	153	1137	0,13	984	4
2	Keetstr. (südl.)	1	70	1200	477	1137	0,42	660	5
3	Klapphakenstr.	1	70	1200	133	1137	0,12	1004	4
4	Keetstr. (nördl.)	1	70	1200	473	1137	0,42	664	5

Gesamter Verkehr Verkehr im Kreis

Abfluss über alle Ausfahrten : 1236 Pkw-E/h davon Kraftfahrzeuge : 1230 Fz/h

Summe aller Wartezeiten : 1,7 Fz-h/h Mittl. Wartezeit über alle Fz : 5,0 s pro Fz

Berechnungsverfahren:

Wartezeit : HBS 2009 + HBS 2015 = Akcelik, Troutbeck (1991) mit T = 3600

Fußgänger-Einfluss : Griffith (1981)

Kapazität, mittlere Wartezeit und Staulängen - mit Fußgängereinfluss Anlage 5.2

Datei: KP02-P~1.KRS
Projekt: VUS Famila in Lohne

Projekt-Nummer: 216213

Knoten: Keetstr. / Klapphakenstr. / Ladestr. Stunde: Sph Prognose Variante 2 (2 Ausfahrten)

Wartezeiten

		n-in	F+R	q-Kreis	q-e-vorh	q-e-max	Х	Reserve	Wz	QSV
	Name	-	/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	-	Pkw-E/h	S	-
1	Ladestr.	1	70	464	236	826	0,29	590	6,1	Α
2	Keetstr. (südl.)	1	70	223	335	1028	0,33	693	5,2	Α
3	Klapphakenstr.	1	70	425	134	858	0,16	724	5,0	Α
4	Keetstr. (nördl.)	1	70	86	531	1148	0,46	617	5,8	Α

Staulängen

		n-in	F+R	q-Kreis	q-e-vorh	q-e-max	L	L-95	L-99	QSV
	Name	-	/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	Fz	Fz	Fz	-
1	Ladestr.	1	70	464	236	826	0,3	1	2	Α
2	Keetstr. (südl.)	1	70	223	335	1028	0,3	1	2	Α
3	Klapphakenstr.	1	70	425	134	858	0,1	1	1	Α
4	Keetstr. (nördl.)	1	70	86	531	1148	0,6	3	4	Α

Gesamt-Qualitätsstufe: A

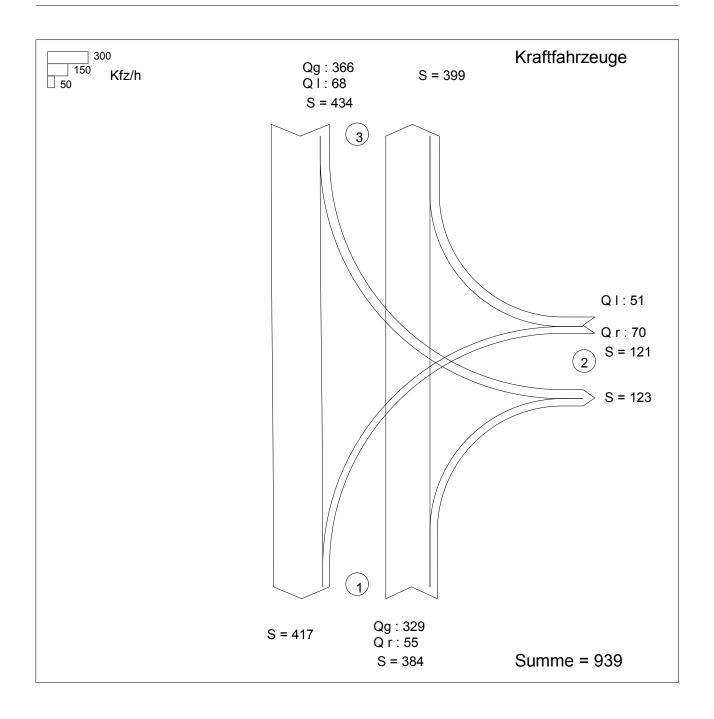
Gesamter Verkehr Verkehr im Kreis

Zufluss über alle Zufahrten: 1236Pkw-E/hdavon Kraftfahrzeuge: 1230Fz/h
Summe aller Wartezeiten
: 1,9Fz-h/hMittl. Wartezeit über alle Fz: 5,6s pro Fz

Berechnungsverfahren:

Kapazität : Deutschland: HBS 2015

Wartezeit : HBS 2009 + HBS 2015 = Akcelik, Troutbeck (1991) mit T = 3600


Staulängen : Wu, 1997 Fußgänger-Einfluss : Stuwe, 1992 LOS - Einstufung : HBS (Deutschland)

Verkehrsfluss-Diagramm in Form einer Einmündung

Projekt : VUS Famila in Lohne Knotenpunkt : Keetstr. / Parkplatz Lidl

Stunde : Sph Analyse

Datei : KP 03-ANALYSE_160802.kob

HBS 2015, Kapitel S5: Stadtstraßen: Knotenpunkte ohne Lichtsignalanlage

Projekt : VUS Famila in Lohne Knotenpunkt : Keetstr. / Parkplatz Lidl

Stunde : Sph Analyse

Datei : KP 03-ANALYSE_160802.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	
2		329				1800					А
3	•	55				1600					Α
4	◆ 1	51	6,5	3,8	791	310		13,9	1	1	В
6	-	70	5,9	3,9	357	624		6,5	1	1	А
Misch-N		121				437	4 + 6	11,4	2	2	В
8	•	366				1800					А
7	▼	68	5,5	2,8	384	830		4,7	1	1	А
Misch-H		434				1800	7 + 8	2,6	1	2	А

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt

Lage des Knotenpunkte : Innerorts Alle Einstellungen nach : HBS 2015

Strassennamen:

Hauptstrasse: Keetstr. (südl.)

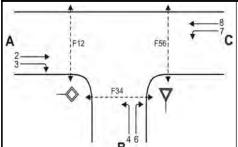
Keetstr. (nördl.)

Nebenstrasse: Parkplatz Lidl

HBS 2015 S5

KNOBEL Version 7.1.1

IPW INGENIEURPLANUNG Wallenhorst


В

Anlage 5.3 Formblatt S5-1a: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Keetstr. (südl.) /B Parkplatz Lidl Verkehrsdaten: Datum _____ [] Planung 🥻 Analyse Uhrzeit Verkehrsregelung: Zufahrt B: [] ▼ Zufahrt D: Zielvorgaben: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B **Geometrische Randbedingungen** Zufahrt Verkehrs-Fahrstreifen Fußgängerfurt strom Anzahl Aufstellänge Dreiecksinsel (RA) Mittelinsel FGÜ (ja/nein) (0/1/2)n [Pkw-E] (ja/nein) (ja/nein) 1 3 4a 4b 2 1 ---------Α 3 0 --nein nein (für ja, F12 --------nein siehe Ziffer S5.6) 4 1 В 6 0 0 nein --nein (für ja, siehe Ziffer S5.6) F34 --nein 7 0 0 ------C 8 1 --nein (für ja, F56 -----nein siehe Ziffer S5.6)

	Bemessungsverkehrsstärken und Verkehrszusammensetzung											
Zufahrt	Verkehrs- strom	Rad	LV	Lkw+Bus	LkwK	Fz (Sp.5 + Sp.6 + Sp.7 + Sp.8)	Fg	Pkw-E / Fz (Gl.(S5-2) oder Gl.(S5-3) oder Gl.(S5-4))	Pkw-E (Gl. (S5-1)) (Sp.9*Sp.11)			
		q _{Rad,i} [Rad/h]	q Lv,i [Pkw/h]	q _{Lkw+Bus,i} [Lkw/h]	q _{LkwK,i} [LkwK/h]	q _{Fz,i} [Fz/h]	q _{Fg,i} [Fg/h]	f _{PE,i}	q _{PE,i} [Pkw-E/h]			
		5	6	7	8	9	10	11	12			
	2	0	329	0	0	329		1,000	329			
А	3	0	55	0	0	55		1,000	55			
	F12						0					
	4	0	51	0	0	51		1,000	51			
В	6	0	70	0	0	70		1,000	70			
	F34						0					
	7	0	68	0	0	68		1,000	68			
С	8	0	366	0	0	366		1,000	366			
	F56						0					

Formblatt S5-1b: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Keetstr. (südl.) /B Parkplatz Lidl F12 F56 Verkehrsdaten: Datum [] Planung Y Analyse Uhrzeit Zufahrt B: Verkehrsregelung: []Zufahrt D: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Zielvorgaben: Kapazität der Verkehrsströme 2 und 8 Verkehrsstärke Kapazität Verkehrs-Auslastungsgrad (Sp.13 / Sp.14) x _i [-] strom (Sp.12) q PE,i [Pkw-E/h] C_{PE,i} [Pkw-E/h] 13 14 15 329 1800 2 0,183 8 366 1800 0,203 Grundkapazität der Verkehrsströme 3, 4, 6 und 7 Verkehrs-Verkehrsstärke Hauptströme Grundkapazität Abminderungsfaktor Fg (Sp.12) q _{PE,i} [Pkw-E/h] (Bild S5-2) G_{PE,i} [Pkw-E/h] (Tabelle S5-2) (Bild S5-3) strom q _{p,i} [Fz/h] f _{f,EK,j} [-j 16 18 19 17 ohne RA mit RA ohne RA mit RA ohne RA mit RA 55 3 0 1600 1,000 7 68 384 830 1,000 (j=F34)ohne RA mit RA 6 70 356 624 1,000 4 51 790 345 1,000 (j=F12)Kapazität der Verkehrsströme 3, 6 und 7 Verkehrs-Kapazität Auslastungsgrad staufreier Zustand (Gl.(S5-7)) (Sp.18*Sp.19) C_{PE,i} [Pkw-E/h] strom (Gl.(S5-8) mit Sp.2, 16 und 20) (Sp.16/Sp.20) x [-] $p_{0,i}[-]$ 21 22 3 1600 0,034 0,966 7 830 0,082 0,897 6 624 0,112 0,888 Kapazität des Verkehrsstroms 4 Auslastungsgrad (Sp.16/Sp.23) Kapazität (Gl.(S5-9))bzw.(Sp.18*Sp.19*Sp.22) C _{PE,4} [Pkw-E/h] Verkehrsstrom X 4 [-] 4 310 0,165

Formblatt S5-1c: Beurteilung einer Einmündung nach HBS 2015 (S5)

Knotenpunkt: A-C Keetstr. (südl.) /B Parkplatz Lidl

Verkehrsdaten: Datum

Uhrzeit _____ [] Planung Analyse

Verkehrsregelung: Zufahrt B: [] \bigvee Zufahrt D: \bigvee

Zielvorgaben: Mittlere Wartezeit t $_{W} = 20 \text{ s}$ Qualitätsstufe \underline{B}

Kapazität der Mischströme

Zufahrt	Verkehrs- strom	Auslastungsgrad (Sp.15, 21, 24)	Aufstellplätze (Sp.2)	Verkehrsstärke (ΣSp.12)	Kapazität (Gl.(S5-10) bzw. (S5-11))	Verkehrszusam- mensetzung (Gl.(S5-5) mit Sp.9 und 11)
		x ¡[-]	n [Pkw-E]	q _{PE,i} [Pkw-E/h]	C _{PE,m} [Pkw-E/h]	
		25	26	27	28	29
В	4	0,165		121	437	1,000
	6	0,112	0			_,,,,,
С	7	0,082	0			
	8	0,203				

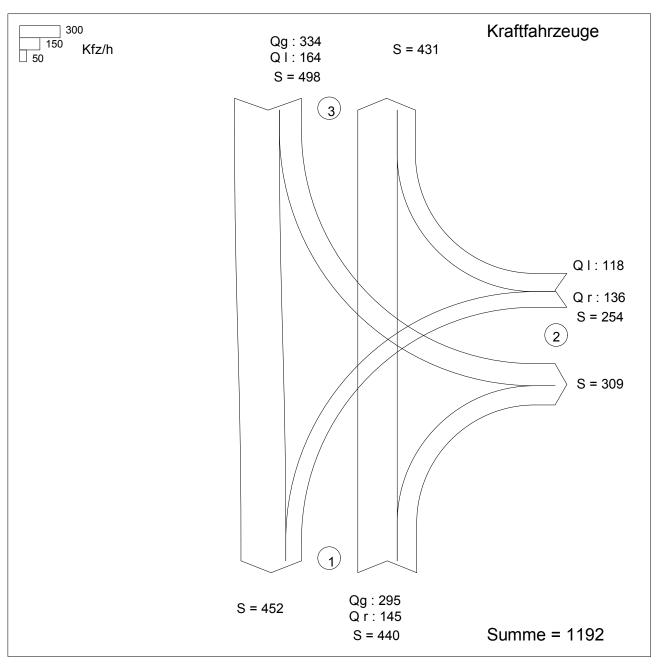
Beurteilung der Qualität des Verkehrsablaufs der Fahrzeugströme

Zufahrt	Verkehrs- strom	Verkehrs- zusammen- setzung (Sp.11 u. 29)	Kapazität in Pkw-E/h (Sp.14, 20,	Kapazität in Fz/h (GI.(S5-31))	Kapazitäts- reserve (GI.(S5-32))	mittlere Wartezeit (Bild S5-24)	Qualitätsstufe (Tabelle S5-1 mit Sp.34)
		f _{PE,i} bzw. f _{PE,m} [-]	23 und 28) C _{PE,i} bzw. C _{PE,m} [Pkw-E/h]	(Sp.31/Sp.30 C _i bzw. C _m [Fz/h]	(Sp.32-Sp.9) R _i bzw. R _m [Fz/h]	t _{w,i} bzw. t _{w,m} [s]	QSV
		30	31	32	33	34	35
A	2	1,000	1800	1800	1471	2,4	А
	3	1,000	1600	1600	1545	2,3	А
В	4	1,000	310	310	259	13,9	В
	6	1,000	624	624	554	6,5	А
С	7	1,000	830	830	762	4,7	А
	8	1,000	1800	1800	1434	2,5	А
В	4+6	1,000	437	437	316	11,4	В
С	7+8	1,000	1800	1800	1366	2,6	А
				erreichbare	Qualitätsstuf	e QSV _{Fz,ges}	В

Anlage 5.3 Formblatt S5-1d: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Keetstr. (südl.) /B Parkplatz Lidl F12 F56 Verkehrsdaten: Datum [] Planung Y Analyse Uhrzeit Zufahrt B: Verkehrsregelung: Zufahrt D: Zielvorgaben: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (ohne Mittelinsel) Zufahrt Fußgänger maßgebende Summe der mittl. Wartezeit Summe der Qualitätsstufe (Tabelle S5-1 mit Sp.39) QSV bzw. Rad-Hauptströme Hauptströme (Bild S5-29 mittl. Wartezeit mit Sp.37) verkehrs-(Tabelle S5-9) Σq _{p,i} [Fz/h] 37 q _{p,i} [Fz/h] t _{w,i} [s] 38 strom $\sum t_{w,i}[s]$ <u>39</u> 40 F1 366 750 F2 384 0 (keine Fussg.) F23 ---Α R11-1 0 (kein Radf.) R11-2 F23 0 F3 121 0 (keine Fussg.) В F4 121 F45 R2 ------0 (kein Radf.) ---F45 ------F5 329 0 (keine Fussg.) 763 С 434 F6 R5-1 0 (kein Radf.) ---R5-2 Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (mit Mittelinsel)

Zufahrt	Fußgänger- bzw. Rad- verkehrs- strom	maßgebende Hauptströme (Tabelle S5-9) q _{p,i} [Fz/h]	mittl. Wartezeit (Bild S5-29 mit Sp.41) t _{w,i} [s]	Summe der mittl. Wartezeit Σt _{w,i} [s]	Qualitätsstufe (Tabelle S5-1 mit Sp.43 QSV
	F1	41	42	43	44
	F2			siehe	oben
Α	F23				
	R11-1				
	R11-2				
	F23				
	F3			siehe	oben
В	F4			Sierie	oben
	F45				
	R2				
	F45				
	F5			siehe	oben
С	F6				
	R5-1				
	R5-2				
		e	rreichbare Qualitäts	stufe QSV Fg/Rad,ges	

KNOBEL Version 7.1.1


IPW INGENIEURPLANUNG Wallenhorst

Verkehrsfluss-Diagramm in Form einer Einmündung

Projekt : VUS Famila in Lohne Knotenpunkt : Keetstr. / Parkplatz Lidl

Stunde : Sph Prognose Variante 1 (1 Ausfahrt)

Datei : KP 03-PROG-V1_161221.kob

Zufahrt 1: Keetstr. (südl.) Zufahrt 2: Parkplatz Lidl Zufahrt 3: Keetstr. (nördl.)

HBS 2015, Kapitel S5: Stadtstraßen: Knotenpunkte ohne Lichtsignalanlage

Projekt : VUS Famila in Lohne Knotenpunkt : Keetstr. / Parkplatz Lidl

Stunde : Sph Prognose Variante 1 (1 Ausfahrt)

Datei : KP 03-PROG-V1_161221.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	
2		295				1800					А
3	•	145				1600					А
4	◆ 1	118	6,5	3,8	866	232		31,3	3	5	D
6	₽	136	5,9	3,9	368	617		7,5	1	2	А
Misch-N		254				349	4+6	36,5	7	11	D
8	•	334				1800					А
7	₩	164	5,5	2,8	440	779		5,9	1	2	А
Misch-H		498				1800	7 + 8	2,8	2	2	А

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt

Lage des Knotenpunkte : Innerorts Alle Einstellungen nach : HBS 2015

Strassennamen:

Hauptstrasse: Keetstr. (südl.)

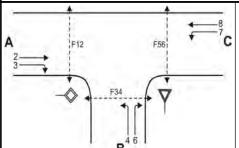
Keetstr. (nördl.)

Nebenstrasse: Parkplatz Lidl

HBS 2015 S5

KNOBEL Version 7.1.3

IPW INGENIEURPLANUNG Wallenhorst


D

Anlage 5.3 Formblatt S5-1a: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Keetstr. (südl.) /B Parkplatz Lidl Verkehrsdaten: Datum Planung [] Analyse Uhrzeit Verkehrsregelung: Zufahrt B: [] ▼ Zufahrt D: 🇹 🗸 Zielvorgaben: Mittlere Wartezeit t $_{\text{W}} = \underline{20 \text{ s}}$ Qualitätsstufe $\underline{\text{B}}$ **Geometrische Randbedingungen** Zufahrt Verkehrs-Fahrstreifen Fußgängerfurt strom Anzahl Aufstellänge Dreiecksinsel (RA) Mittelinsel FGÜ (ja/nein) (0/1/2)n [Pkw-E] (ja/nein) (ja/nein) 1 3 4a 4b 2 1 ---------Α 3 0 --nein nein (für ja, F12 --------nein siehe Ziffer S5.6) 4 1 В 6 0 0 nein --nein (für ja, siehe Ziffer S5.6) F34 --nein 7 0 0 ------C 8 1 nein (für ja, F56 -----nein siehe Ziffer S5.6)

	Bemessungsverkehrsstärken und Verkehrszusammensetzung											
Zufahrt	Verkehrs- strom	Rad	LV	Lkw+Bus	LkwK	Fz (Sp.5 + Sp.6 + Sp.7 + Sp.8)	Fg	Pkw-E / Fz (Gl.(S5-2) oder Gl.(S5-3) oder Gl.(S5-4))	Pkw-E (Gl. (S5-1)) (Sp.9*Sp.11)			
		q _{Rad,i} [Rad/h]	q Lv,i [Pkw/h]	q _{Lkw+Bus,i} [Lkw/h]	q _{LkwK,i} [LkwK/h]	q _{Fz,i} [Fz/h]	q _{Fg,i} [Fg/h]	f _{PE,i}	q _{PE,i} [Pkw-E/h]			
		5	6	7	8	9	10	11	12			
	2	0	295	0	0	295		1,000	295			
А	3	0	145	0	0	145		1,000	145			
	F12						0					
	4	0	118	0	0	118		1,000	118			
В	6	0	136	0	0	136		1,000	136			
	F34						0					
	7	0	164	0	0	164		1,000	164			
С	8	0	334	0	0	334		1,000	334			
	F56						0					

Formblatt S5-1b: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Keetstr. (südl.) /B Parkplatz Lidl F12 F56 Verkehrsdaten: Datum Planung [] Analyse Uhrzeit Zufahrt B: Verkehrsregelung: []Zufahrt D: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Zielvorgaben: Kapazität der Verkehrsströme 2 und 8 Verkehrs-Verkehrsstärke Kapazität Auslastungsgrad (Sp.13 / Sp.14) x _i [-] strom (Sp.12) q PE,i [Pkw-E/h] C_{PE,i} [Pkw-E/h] 13 14 15 295 1800 2 0,164 8 334 1800 0,186 Grundkapazität der Verkehrsströme 3, 4, 6 und 7 Verkehrs-Verkehrsstärke Hauptströme Grundkapazität Abminderungsfaktor Fg (Sp.12) q _{PE,i} [Pkw-E/h] (Bild S5-2) G_{PE,i} [Pkw-E/h] (Tabelle S5-2) (Bild S5-3) strom q _{p,i} [Fz/h] f _{f,EK,j} [-] 16 18 19 17 ohne RA mit RA ohne RA mit RA ohne RA mit RA 3 145 0 1600 1,000 7 164 440 779 1,000 (j=F34)ohne RA mit RA 6 136 367 617 1,000 4 118 865 313 1,000 (j=F12)Kapazität der Verkehrsströme 3, 6 und 7 Verkehrs-Kapazität Auslastungsgrad staufreier Zustand (Gl.(S5-7)) (Sp.18*Sp.19) C_{PE,i} [Pkw-E/h] strom (Gl.(S5-8) mit Sp.2, 16 und 20) (Sp.16/Sp.20) x [-] $p_{0,i}[-]$ 21 22 3 1600 0,091 0,909 7 779 0,742 0,211 6 617 0,220 0,780 Kapazität des Verkehrsstroms 4 Auslastungsgrad (Sp.16/Sp.23) Kapazität (Gl.(S5-9))bzw.(Sp.18*Sp.19*Sp.22) C _{PE,4} [Pkw-E/h] Verkehrsstrom X 4 [-] 4 232 0,508

Formblatt S5-1c: Beurteilung einer Einmündung nach HBS 2015 (S5)

Knotenpunkt: A-C Keetstr. (südl.) /B Parkplatz Lidl

Verkehrsdaten: Datum

Uhrzeit Planung [] Analyse

Verkehrsregelung: Zufahrt B: [] 🔻

Zufahrt B: [] ∇ Zufahrt D: \checkmark

STOP

∨ .

Zielvorgaben: Mittlere Wartezeit t $_{W} = 20 \text{ s}$ Qualitätsstufe \underline{B}

Kapazität der Mischströme

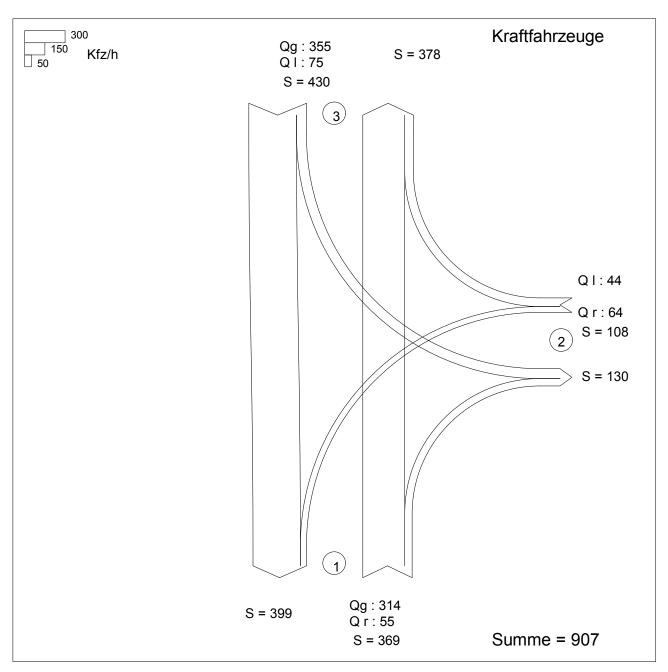
Zufahrt	Verkehrs- strom	Auslastungsgrad (Sp.15, 21, 24)	Aufstellplätze (Sp.2)	Verkehrsstärke (ΣSp.12)	Kapazität (Gl.(S5-10) bzw. (S5-11))	Verkehrszusam- mensetzung (Gl.(S5-5) mit Sp.9 und 11)
		x ¡[-]	n [Pkw-E]	q _{PE,i} [Pkw-E/h]	C _{PE,m} [Pkw-E/h]	f _{PE,m} [-]
		25	26	27	28	29
В	4	0,508		254	349	1,000
	6	0,220	0		3.5	2,000
С	7	0,211	0			
	8	0,186				

Beurteilung der Qualität des Verkehrsablaufs der Fahrzeugströme

		_	-			_	
Zufahrt	Verkehrs- strom	Verkehrs- zusammen- setzung	Kapazität in Pkw-E/h	Kapazität in Fz/h	Kapazitäts- reserve	mittlere Wartezeit	Qualitätsstufe (Tabelle S5-1 mit Sp.34)
		(Sp.11 u. 29)	(Sp.14, 20, 23 und 28)	(Gl.(S5-31)) (Sp.31/Sp.30 C _i bzw.	(Gl.(S5-32)) (Sp.32-Sp.9) R _i bzw.	(Bild S5-24)	QSV
		f _{PE,i} bzw. f _{PE,m} [-]	C _{PE,i} bzw. C _{PE,m} [Pkw-E/h]		R _m [Fz/h]	t _{w,i} bzw. t _{wm} [s]	Q3V
		30	31	32	33	t _{w,m} [s]	35
А	2	1,000	1800	1800	1505	2,4	А
	3	1,000	1600	1600	1455	2,5	А
В	4	1,000	232	232	114	31,3	D
	6	1,000	617	617	481	7,5	А
С	7	1,000	779	779	615	5,9	А
	8	1,000	1800	1800	1466	2,5	А
В	4+6	1,000	349	349	95	36,5	D
С	7+8	1,000	1800	1800	1302	2,8	А
				erreichbare	Qualitätsstuf	e QSV _{Fz,ges}	D

Zufahrt	Fußgänger bzw. Rad- verkehrs- strom	maßgebende Hauptströme (Tabelle S5-9) q _{p,i} [Fz/h]	Summe der Hauptströme Σq _{p,i} [Fz/h]	mittl. Wartezeit (Bild S5-29 mit Sp.37) t _{w,i} [s]	Summe der mittl. Wartezeit ∑t _{w,i} [s]	Qualitätsstufe (Tabelle S5-1 mit Sp.39) QSV	
		36	37	38	39	40	
	F1	334	774				
	F2	440	//4		0 (keine Fussg.)		
Α	F23						
	R11-1				0 (kein Radf.)		
	R11-2				0 (Keili Kaul.)		
	F23						
	F3	0	254		0 (keine Fussg.)		
В	F4	254	234		o (keille russg.)		
	F45						
	R2				0 (kein Radf.)		
	F45						
	F5	295	793		0 (keine Fussg.)		
С	F6	498	/93				
	R5-1				0 (kein Radf.)		
	R5-2				o (keiii Raul.)		

Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (mit Mittelinsel)


Zufahrt	Fußgänger- bzw. Rad- verkehrs- strom	maßgebende Hauptströme (Tabelle S5-9) q _{p,i} [Fz/h]	mittl. Wartezeit (Bild S5-29 mit Sp.41) t _{w,i} [s]	Summe der mittl. Wartezeit Σt _{w,i} [s]	Qualitätsstufe (Tabelle S5-1 mit Sp.43 QSV
		41	42	43	44
	F1				
	F2			siehe	oben
Α	F23				
	R11-1				
	R11-2				
	F23				
	F3			sicho	oben
В	F4			siehe	oben
	F45				
	R2				
	F45				
	F5			siehe	oben
С	F6				
	R5-1				
	R5-2				
		e	rreichbare Qualitäts	stufe QSV Fg/Rad,ges	

Verkehrsfluss-Diagramm in Form einer Einmündung

Projekt : VUS Famila in Lohne Knotenpunkt : Keetstr. / Parkplatz Lidl

Stunde : Sph Prognose Variante 2 (2 Ausfahrten)

Datei : KP 03-PROG-V2_161208.kob

Zufahrt 1: Keetstr. (südl.) Zufahrt 2: Parkplatz Lidl Zufahrt 3: Keetstr. (nördl.)

HBS 2015, Kapitel S5: Stadtstraßen: Knotenpunkte ohne Lichtsignalanlage

Projekt : VUS Famila in Lohne Knotenpunkt : Keetstr. / Parkplatz Lidl

Stunde : Sph Prognose Variante 2 (2 Ausfahrten)

Datei : KP 03-PROG-V2_161208.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	
2		314				1800					А
3	•	55				1600					А
4	◆ 1	44	6,5	3,8	772	314		13,3	1	1	В
6	₽	64	5,9	3,9	342	635		6,3	1	1	А
Misch-N		108				449	4+6	10,6	1	2	В
8	•	355				1800					А
7	₩	75	5,5	2,8	369	845		4,7	1	1	А
Misch-H		430				1800	7 + 8	2,6	1	2	А

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt

Lage des Knotenpunkte : Innerorts Alle Einstellungen nach : HBS 2015

Strassennamen:

Hauptstrasse: Keetstr. (südl.)

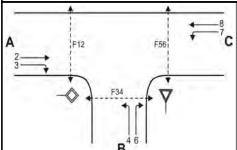
Keetstr. (nördl.)

Nebenstrasse: Parkplatz Lidl

HBS 2015 S5

KNOBEL Version 7.1.3

IPW INGENIEURPLANUNG Wallenhorst


В

Anlage 5.3 Formblatt S5-1a: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Keetstr. (südl.) /B Parkplatz Lidl Verkehrsdaten: Datum Planung [] Analyse Uhrzeit Verkehrsregelung: Zufahrt B: [] 🔻 Zufahrt D: 🇹 🗸 Zielvorgaben: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B **Geometrische Randbedingungen** Zufahrt Verkehrs-Fahrstreifen Fußgängerfurt strom Anzahl Aufstellänge Dreiecksinsel (RA) Mittelinsel FGÜ (ja/nein) (0/1/2)n [Pkw-E] (ja/nein) (ja/nein) 1 3 4a 4b 2 1 ---------Α 3 0 nein nein (für ja, F12 --------nein siehe Ziffer S5.6) 4 1 В 6 0 0 nein --nein (für ja, siehe Ziffer S5.6) F34 --nein 7 0 0 ------C 8 1 nein (für ja, F56 -----nein siehe Ziffer S5.6)

	Bemessungsverkehrsstärken und Verkehrszusammensetzung										
Zufahrt	Verkehrs- strom	Rad	LV	Lkw+Bus	LkwK	Fz (Sp.5 + Sp.6 + Sp.7 + Sp.8)	Fg	Pkw-E / Fz (Gl.(S5-2) oder Gl.(S5-3) oder Gl.(S5-4))			
		q _{Rad,i} [Rad/h]	q Lv,i [Pkw/h]	q _{Lkw+Bus,i} [Lkw/h]	q _{LkwK,i} [LkwK/h]	q _{Fz,i} [Fz/h]	q _{Fg,i} [Fg/h]	f _{PE,i}	q _{PE,i} [Pkw-E/h]		
		5	6	7	8	9	10	11	12		
	2	0	314	0	0	314		1,000	314		
Α	3	0	55	0	0	55		1,000	55		
	F12						0				
	4	0	44	0	0	44		1,000	44		
В	6	0	64	0	0	64		1,000	64		
	F34						0				
	7	0	75	0	0	75		1,000	75		
С	8	0	355	0	0	355		1,000	355		
	F56						0				

Formblatt S5-1b: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Keetstr. (südl.) /B Parkplatz Lidl F12 F56 Verkehrsdaten: Datum Planung [] Analyse Uhrzeit Zufahrt B: Verkehrsregelung: []Zufahrt D: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Zielvorgaben: Kapazität der Verkehrsströme 2 und 8 Verkehrsstärke Verkehrs-Kapazität Auslastungsgrad (Sp.13 / Sp.14) x _i [-] strom (Sp.12) q PE,i [Pkw-E/h] C_{PE,i} [Pkw-E/h] 13 14 15 1800 2 314 0,174 355 8 1800 0,197 Grundkapazität der Verkehrsströme 3, 4, 6 und 7 Verkehrs-Verkehrsstärke Hauptströme Grundkapazität Abminderungsfaktor Fg (Sp.12) q _{PE,i} [Pkw-E/h] (Bild S5-2) G_{PE,i} [Pkw-E/h] (Tabelle S5-2) (Bild S5-3) strom q _{p,i} [Fz/h] f _{f,EK,j} [-] 16 18 19 17 ohne RA mit RA ohne RA mit RA ohne RA mit RA 55 3 0 1600 1,000 7 75 369 845 1,000 (j=F34)ohne RA mit RA 6 64 341 635 1,000 4 44 771 353 1,000 (j=F12)Kapazität der Verkehrsströme 3, 6 und 7 Verkehrs-Kapazität Auslastungsgrad staufreier Zustand (Gl.(S5-7)) (Sp.18*Sp.19) C_{PE,i} [Pkw-E/h] strom (Gl.(S5-8) mit Sp.2, 16 und 20) (Sp.16/Sp.20) x [-] $p_{0,i}[-]$ 21 22 3 1600 0,034 0,966 7 845 0,089 0,889 6 635 0,101 0,899 Kapazität des Verkehrsstroms 4 Auslastungsgrad (Sp.16/Sp.23) Kapazität (Gl.(S5-9))bzw.(Sp.18*Sp.19*Sp.22) C _{PE,4} [Pkw-E/h] Verkehrsstrom X 4 [-] 4 314 0,140

Formblatt S5-1c: Beurteilung einer Einmündung nach HBS 2015 (S5)

Knotenpunkt: A-C Keetstr. (südl.) /B Parkplatz Lidl

Verkehrsdaten: Datum

Uhrzeit Planung [] Analyse

Verkehrsregelung: Zufahrt B: [] 🔻

Zufahrt D:

Zielvorgaben: Mittlere Wartezeit t $_{W} = 20 \text{ s}$ Qualitätsstufe \underline{B}

Kapazität der Mischströme

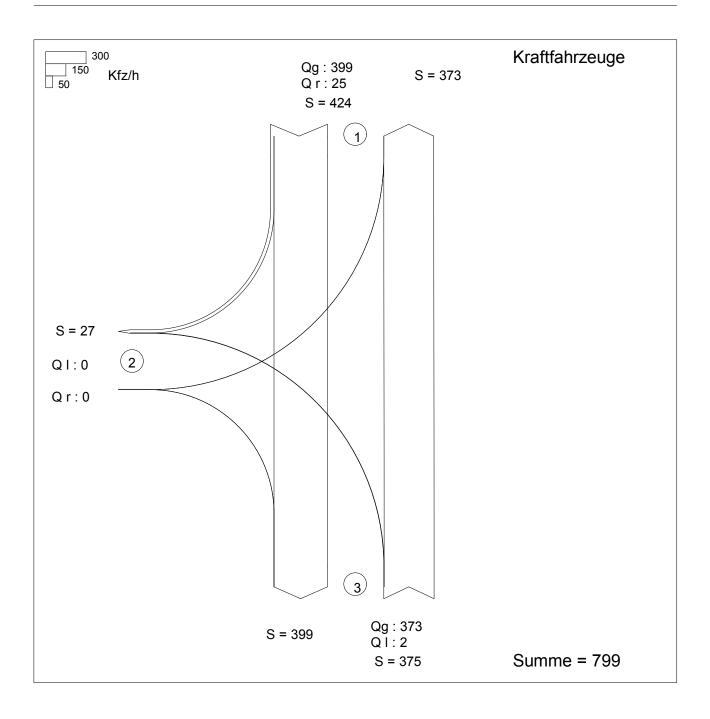
Zufahrt	Verkehrs- strom	Auslastungsgrad (Sp.15, 21, 24)	Aufstellplätze (Sp.2)	Verkehrsstärke (ΣSp.12)	Kapazität (Gl.(S5-10) bzw. (S5-11))	Verkehrszusam- mensetzung (Gl.(S5-5) mit Sp.9 und 11)
		x ¡[-]	n [Pkw-E]	q _{PE,i} [Pkw-E/h]	C _{PE,m} [Pkw-E/h]	f _{PE,m} [-]
		25	26	27	28	29
В	4	0,140		108	449	1,000
	6	0,101	0		,	2,000
	7	0,089	0			
С	8	0,197				

Beurteilung der Qualität des Verkehrsablaufs der Fahrzeugströme

Zufahrt	Verkehrs- strom	Verkehrs- zusammen- setzung (Sp.11 u. 29)	Kapazität in Pkw-E/h (Sp.14, 20,	Kapazität in Fz/h (Gl.(S5-31))	Kapazitäts- reserve (GI.(S5-32))	mittlere Wartezeit (Bild S5-24)	Qualitätsstufe (Tabelle S5-1 mit Sp.34)	
		f _{PE,i} bzw. f _{PE,m} [-]	23 und 28) C _{PE,i} bzw. C _{PE,m} [Pkw-E/h]	(Sp.31/Sp.30 C _i bzw. C _m [Fz/h]	(Sp.32-Sp.9) R _i bzw. R _m [Fz/h]	t _{w,i} bzw.	QSV	
		30	31	32	33	34	35	
A	2	1,000	1800	1800	1486	2,4	А	
	3	1,000	1600	1600	1545	2,3	А	
В	4	1,000	314	314	270	13,3	В	
Ь	6	1,000	635	635	571	6,3	А	
С	7	1,000	845	845	770	4,7	А	
	8	1,000	1800	1800	1445	2,5	А	
В	4+6	1,000	449	449	341	10,6	В	
С	7+8	1,000	1800	1800	1370	2,6	А	
erreichbare Qualitätsstufe QSV Fz,ges								

	bzw. Rad-	Hauptströme	Hauptströme	(Bild S5-29	mittl. Wartezeit	(Tabelle S5-1	
	verkehrs-	(Tabelle S5-9)		mit Sp.37)		mit Sp.39)	
	strom	` q _{p,i} [Fz/h] ´	Σq _{p,i} [Fz/h]	t _{w,i} [s] ´	Σt _{w,i} [s]	QŠV	
		36	37	38	39	40	
	F1	355	724				
	F2 369		727		0 (keine Fussg.)		
Α	F23						
	R11-1				0 (kein Radf.)		
	R11-2				o (Keili Kaul.)		
	F23						
	F3	0	108		0 (keine Fussg.)		
В	F4	108	100		o (keine russg.)		
	F45						
	R2				0 (kein Radf.)		
	F45						
	F5	314	744		0 (keine Fussg.)		
С	F6	430	/ 144				
	R5-1				O (kain Badf)		
	R5-2				0 (kein Radf.)		

Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (mit Mittelinsel)


Zufahrt	Fußgänger- bzw. Rad- verkehrs- strom	maßgebende Hauptströme (Tabelle S5-9) q _{p,i} [Fz/h] 41	mittl. Wartezeit (Bild S5-29 mit Sp.41) t _{w,i} [s] 42	Summe der mittl. Wartezeit Σt _{w,i} [s] 43	Qualitätsstufe (Tabelle S5-1 mit Sp.43 QSV 44	
	F1	41	72	43	77	
	F2			siehe	oben	
Α	F23					
	R11-1					
	R11-2					
	F23					
	F3			sicho	ohon	
В	F4			siehe	oben	
	F45					
	R2					
	F45					
	F5			siehe	oben	
С	F6					
	R5-1					
	R5-2					
		e	rreichbare Qualitäts	stufe QSV Fg/Rad,ges		

Verkehrsfluss-Diagramm in Form einer Einmündung

Projekt : VUS Famila in Lohne Knotenpunkt : Keetstr. / Küstermeyerstr.

Stunde : Sph Analyse

Datei : KP 04-ANALYSE_160802.kob

HBS 2015, Kapitel S5: Stadtstraßen: Knotenpunkte ohne Lichtsignalanlage

Projekt : VUS Famila in Lohne

Knotenpunkt: Keetstr. / Küstermeyerstr.

Stunde : Sph Analyse

Datei : KP 04-ANALYSE_160802.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	
2		399				1800					А
3	•	25				1600					А
4	◆ 1	0	6,5	3,8	787	346		0,0	0	0	А
6	₽	0	5,9	3,9	412	588		0,0	0	0	А
Misch-N		0				422	4+6	0,0	0	0	А
8	•	373				1800					Α
7	₩	2	5,5	2,8	424	793		4,6	1	1	А
Misch-H		375				1800	7 + 8	2,5	1	2	А

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt

Lage des Knotenpunkte : Innerorts Alle Einstellungen nach : HBS 2015

Strassennamen:

Hauptstrasse: Keetstr. (nördl.)

Keetstr. (südl.)

Nebenstrasse: Küstermeyerstr.

HBS 2015 S5

KNOBEL Version 7.1.1

IPW INGENIEURPLANUNG Wallenhorst

Α

Formblatt S5-1a: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Keetstr. (nördl.) /B Küstermeyerstr. F12 F56 Verkehrsdaten: Datum [] Planung 🕍 Analyse Uhrzeit Zufahrt B: [] ∇ Verkehrsregelung: Zufahrt D: 🌠 🔽 Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Zielvorgaben: Geometrische Randbedingungen Zufahrt | Verkehrs-Fahrstreifen Fußgängerfurt strom Aufstellänge Dreiecksinsel (RA) FGÜ Anzahl Mittelinsel (0/1/2)n [Pkw-E] (ja/nein) (ja/nein) (ja/nein) 1 2 3 4a 4b 2 1 ---3 0 Α nein nein (für ja, F12 --------nein siehe Ziffer S5.6) 4 1 В 6 0 0 nein --nein (für ja, siehe Ziffer S5.6) F34 --nein 7 0 0 ------C 8 1 nein (für ja, F56 --nein siehe Ziffer S5.6) Bemessungsverkehrsstärken und Verkehrszusammensetzung LkwK Fz (Sp.5 + Sp.6 + Sp.7 + Sp.8) Pkw-E / Fz (Gl.(S5-2) oder Gl.(S5-3) oder Pkw-E Zufahrt | Verkehrs-Lkw+Bus Rad (Gl. (S5-1)) (Sp.9*Sp.11) strom Ġl.(S5-4)) q Lv,i q _{Lkw+Bus,i} [Pkw/h] [Lkw/h] q _{LkwK,i} [Lk<u>wK</u>/h] q _{Fz,i} [Fz/h] q _{Fg,i} [Fg/h] f__{PĘ,i} q _{PE,i} [Pkw-E/h] 5 6 8 9 10 11 12 2 0 399 0 0 399 399 1,000 Α 3 0 25 0 0 25 1,000 25 ---F12 0 ------------------4 0 0 0 0 0 --n. def. 0 В 6 0 0 0 0 0 0 --n. def. F34 0 ---------------------7 2 2 2 0 0 0 1,000

KNOBEL Version 7.1.1

373

0

0

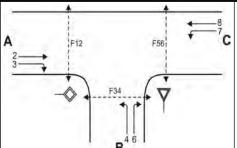
373

0

C

8

F56


0

1,000

373

Formblatt S5-1b: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Keetstr. (nördl.) /B Küstermeyerstr. F12 F56 Verkehrsdaten: Datum Uhrzeit [] Planung Y Analyse Zufahrt B: Verkehrsregelung: [] Zufahrt D: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Zielvorgaben: Kapazität der Verkehrsströme 2 und 8 Verkehrsstärke Kapazität Verkehrs-Auslastungsgrad (Sp.13 / Sp.14) x _i[-] strom (Sp.12) q PE,i [Pkw-E/h] C_{PE,i} [Pkw-E/h] 13 14 15 399 1800 2 0,222 8 373 1800 0,207 Grundkapazität der Verkehrsströme 3, 4, 6 und 7 Verkehrs-Verkehrsstärke Hauptströme Grundkapazität Abminderungsfaktor Fg (Sp.12) q _{PE,i} [Pkw-E/h] (Bild S5-2) G_{PE,i} [Pkw-E/h] (Tabelle S5-2) (Bild S5-3) strom q _{p,i} [Fz/h] f _{f,EK,j} [-j 16 18 19 17 ohne RA mit RA ohne RA mit RA ohne RA mit RA 25 3 0 1600 1,000 7 2 424 793 1,000 (j=F34)ohne RA mit RA 6 0 411 588 1,000 4 0 786 347 1,000 (j=F12)Kapazität der Verkehrsströme 3, 6 und 7 Verkehrs-Kapazität Auslastungsgrad staufreier Zustand (Gl.(S5-7)) (Sp.18*Sp.19) C_{PE,i} [Pkw-E/h] strom (Gl.(S5-8) mit Sp.2, 16 und 20) (Sp.16/Sp.20) x [-] $p_{0,i}[-]$ 21 22 3 1600 0,016 0,984 7 793 0,003 0,997 6 588 0,000 1,000 Kapazität des Verkehrsstroms 4 Auslastungsgrad (Sp.16/Sp.23) Kapazität (Gl.(S5-9))bzw.(Sp.18*Sp.19*Sp.22) C _{PE,4} [Pkw-E/h] Verkehrsstrom X 4 [-] 4 346 0,000

Formblatt S5-1c: Beurteilung einer Einmündung nach HBS 2015 (S5)

Knotenpunkt: A-C Keetstr. (nördl.) /B Küstermeyerstr.

Verkehrsdaten: Datum

Uhrzeit [] Planung Manalyse

Verkehrsregelung: Zufahrt B: [] \bigvee Zufahrt D: \bigvee

Zielvorgaben: Mittlere Wartezeit t $_{W} = 20 \text{ s}$ Qualitätsstufe \underline{B}

Kapazität der Mischströme

Zufahrt	Verkehrs- strom	Auslastungsgrad (Sp.15, 21, 24)	Aufstellplätze (Sp.2)	Verkehrsstärke (ΣSp.12)	Kapazität (Gl.(S5-10) bzw. (S5-11))	Verkehrszusam- mensetzung (GI.(S5-5) mit Sp.9 und 11)
		x ¡[-]	n [Pkw-E]	q _{PE,i} [Pkw-E/h]	C _{PE,m} [Pkw-E/h]	f _{PE,m} [-] ´
		25	26	27	28	29
В	4	0,000		0	422	1,000
Б	6	0,000	0	Ç		2,000
С	7	0,003	0			
	8	0,207				

Beurteilung der Qualität des Verkehrsablaufs der Fahrzeugströme

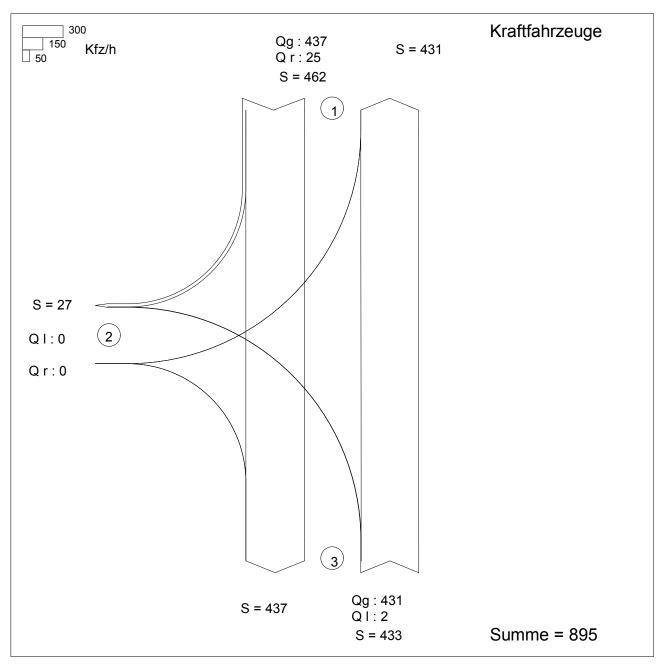
Zufahrt	Verkehrs- strom	Verkehrs- zusammen- setzung (Sp.11 u. 29)	Kapazität in Pkw-E/h (Sp.14, 20,	Kapazität in Fz/h (Gl.(S5-31))	Kapazitäts- reserve (GI.(S5-32))	mittlere Wartezeit (Bild S5-24)	Qualitätsstufe (Tabelle S5-1 mit Sp.34)
		f _{PE,i} bzw. f _{PE,m} [-]	23 und 28) C _{PE,i} bzw. C _{PE,m} [Pkw-E/h]		(Sp.32-Sp.9) R _i bzw. R _m [Fz/h]	t _{w,i} bzw. t _{w,m} [s]	QSV
		30	31	32	33	34	35
A	2	1,000	1800	1800	1401	2,6	А
	3	1,000	1600	1600	1575	2,3	А
В	4	1,000	346	346	346	0,0	А
Ь	6	1,000	588	588	588	0,0	А
С	7	1,000	793	793	791	4,6	А
	8	1,000	1800	1800	1427	2,5	А
В	4+6	1,000	422	422	422	0,0	А
С	7+8	1,000	1800	1800	1425	2,5	А
_				erreichbare	Qualitätsstuf	e QSV _{Fz,ges}	А

Formblatt S5-1d: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Keetstr. (nördl.) /B Küstermeyerstr. Verkehrsdaten: Datum [] Planung 🧗 Analyse Uhrzeit Verkehrsregelung: Zufahrt B: [] ▼ Zufahrt D: Zielvorgaben: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und Zufahrt litätsstufe

auf eigene	n Radverkehrsa	nlagen geführte	r Radverkehrsstr	öme (ohne Mittel	insel)
Fußgänger	maßgebende	Summe der	mittl. Wartezeit	Summe der	Qualit
bzw. Rad-	Hauptströme	Hauptströme	(Bild S5-29	mittl. Wartezeit	(Tabe

	bzw. Rad-	Hauptströme	Hauptströme	(Bild S5-29	mittl. Wartezeit	(Tabelle S5-1
	verkehrs-	(Tabelle S5-9)		mit Sp.37)		mit Sp.39)
	strom	` q _{p,i} [Fz/h] ´	Σq _{p,i} [Fz/h]	t _{w,i} [s] ´	Σt _{w,i} [s]	QSV
		36	37	38	39	40
	F1	373	797			
	F2	424	737		0 (keine Fussg.)	
Α	F23					
	R11-1				0 (kein Radf.)	
	R11-2				o (kein kaui.)	
	F23					
	F3	0	0		0 (keine Fussg.)	
В	F4	0			o (keille russg.)	
	F45					
	R2				0 (kein Radf.)	
	F45					
	F5	399	774		0 (keine Fussg.)	
С	F6	375	//4			
	R5-1				0 (kein Radf.)	
	R5-2		- 	- 	o (Keiii Kaul.)	

Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (mit Mittelinsel)


Zufahrt	Fußgänger- bzw. Rad- verkehrs- strom	maßgebende Hauptströme (Tabelle S5-9) q _{p,i} [Fz/h]	mittl. Wartezeit (Bild S5-29 mit Sp.41) t _{w,i} [s]	Summe der mittl. Wartezeit Σt _{w,i} [s]	Qualitätsstufe (Tabelle S5-1 mit Sp.43 QSV
		41	42	43	44
	F1				
	F2			siehe	oben
Α	F23				
	R11-1				
	R11-2				
	F23				
	F3			aiah a	oben
В	F4			siehe	oben
	F45				
	R2				
	F45				
	F5			siehe	oben
С	F6				
	R5-1				
	R5-2				
	•	е	rreichbare Qualitäts	stufe QSV Fg/Rad,ges	

Verkehrsfluss-Diagramm in Form einer Einmündung

Projekt : VUS Famila in Lohne Knotenpunkt : Keetstr. / Küstermeyerstr.

Stunde : Sph Prognose Variante 1 (1 Ausfahrt)

Datei : KP 04-PROG-V1_161221.kob

Zufahrt 1: Keetstr. (nördl.) Zufahrt 2: Küstermeyerstr. Zufahrt 3: Keetstr. (südl.)

HBS 2015, Kapitel S5: Stadtstraßen: Knotenpunkte ohne Lichtsignalanlage

Projekt : VUS Famila in Lohne

Knotenpunkt: Keetstr. / Küstermeyerstr.

Stunde : Sph Prognose Variante 1 (1 Ausfahrt)

Datei : KP 04-PROG-V1_161221.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	
2		437				1800					А
3	•	25				1600					Α
4	◆ 1	0	6,5	3,8	883	306		0,0	0	0	Α
6	Γ >	0	5,9	3,9	450	564		0,0	0	0	Α
Misch-N		0				388	4+6	0,0	0	0	Α
8	←	431				1800					Α
7	▼	2	5,5	2,8	462	760		4,7	1	1	А
Misch-H		433				1800	7 + 8	2,6	1	2	А

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt

Lage des Knotenpunkte : Innerorts Alle Einstellungen nach : HBS 2015

Strassennamen:

Hauptstrasse: Keetstr. (nördl.)

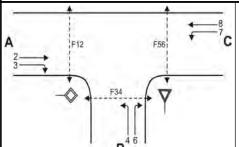
Keetstr. (südl.)

Nebenstrasse: Küstermeyerstr.

HBS 2015 S5

KNOBEL Version 7.1.3

IPW INGENIEURPLANUNG Wallenhorst


Α

Anlage 5.4 Formblatt S5-1a: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Keetstr. (nördl.) /B Küstermeyerstr. Verkehrsdaten: Datum Planung [] Analyse Uhrzeit Verkehrsregelung: Zufahrt B: [] ▼ Zufahrt D: 🌠 🗸 Zielvorgaben: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B **Geometrische Randbedingungen** Zufahrt Verkehrs-Fahrstreifen Fußgängerfurt strom Anzahl Aufstellänge Dreiecksinsel (RA) Mittelinsel FGÜ (ja/nein) (0/1/2)n [Pkw-E] (ja/nein) (ja/nein) 1 3 4a 4b 2 1 ---------Α 3 0 nein nein (für ja, F12 --------nein siehe Ziffer S5.6) 4 1 В 6 0 0 nein --nein (für ja, siehe Ziffer S5.6) F34 --nein 7 0 0 ------C 8 1 nein (für ja, F56 -----nein siehe Ziffer S5.6)

	Bemessungsverkehrsstärken und Verkehrszusammensetzung											
Zufahrt	Verkehrs- strom	Rad	LV	Lkw+Bus	LkwK	Fz (Sp.5 + Sp.6 + Sp.7 + Sp.8)	Fg	Pkw-E / Fz (Gl.(S5-2) oder Gl.(S5-3) oder Gl.(S5-4))	Pkw-E (Gl. (S5-1)) (Sp.9*Sp.11)			
		q _{Rad,i} [Rad/h]	q Lv,i [Pkw/h]	q _{Lkw+Bus,i} [Lkw/h]	q _{LkwK,i} [LkwK/h]	q _{Fz,i} [Fz/h]	q _{Fg,i} [Fg/h]	f _{PE,i}	q _{PE,i} [Pkw-E/h]			
		5	6	7	8	9	10	11	12			
	2	0	437	0	0	437		1,000	437			
Α	3	0	25	0	0	25		1,000	25			
	F12						0					
	4	0	0	0	0	0		n. def.	0			
В	6	0	0	0	0	0		n. def.	0			
	F34						0					
	7	0	2	0	0	2		1,000	2			
С	8	0	431	0	0	431		1,000	431			
	F56						0					

Formblatt S5-1b: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Keetstr. (nördl.) /B Küstermeyerstr. F12 F56 Verkehrsdaten: Datum Planung [] Analyse Uhrzeit Zufahrt B: Verkehrsregelung: []Zufahrt D: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Zielvorgaben: Kapazität der Verkehrsströme 2 und 8 Verkehrs-Verkehrsstärke Kapazität Auslastungsgrad (Sp.13 / Sp.14) x _i [-] strom (Sp.12) q PE,i [Pkw-E/h] C_{PE,i} [Pkw-E/h] 13 14 15 437 1800 2 0,243 8 431 1800 0,239 Grundkapazität der Verkehrsströme 3, 4, 6 und 7 Verkehrs-Verkehrsstärke Hauptströme Grundkapazität Abminderungsfaktor Fg (Sp.12) q _{PE,i} [Pkw-E/h] (Tabelle S5-2) (Bild S5-2) (Bild S5-3) strom q _{p,i} [Fz/h] G PE,i [Pkw-É/h] f _{f,EK,j} [-] 16 18 19 17 ohne RA mit RA ohne RA mit RA ohne RA mit RA 25 3 0 1600 1,000 7 2 462 760 1,000 (j=F34)ohne RA mit RA 6 0 449 564 1,000 4 0 882 307 1,000 (j=F12)Kapazität der Verkehrsströme 3, 6 und 7 Verkehrs-Kapazität Auslastungsgrad staufreier Zustand (Gl.(S5-7)) (Sp.18*Sp.19) C_{PE,i} [Pkw-E/h] strom (Gl.(S5-8) mit Sp.2, 16 und 20) (Sp.16/Sp.20) x [-] $p_{0,i}[-]$ 21 22 3 1600 0,016 0,984 7 760 0,003 0,997 6 564 0,000 1,000 Kapazität des Verkehrsstroms 4 Auslastungsgrad (Sp.16/Sp.23) Kapazität (Gl.(S5-9))bzw.(Sp.18*Sp.19*Sp.22) C _{PE,4} [Pkw-E/h] Verkehrsstrom X 4 [-] 4 306 0,000

Formblatt S5-1c: Beurteilung einer Einmündung nach HBS 2015 (S5)

Knotenpunkt: A-C Keetstr. (nördl.) /B Küstermeyerstr.

Verkehrsdaten: Datum

______ // Planung [] Analyse

Verkehrsregelung: Zufahrt B: []

Zufahrt D:

Zielvorgaben: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B

Kai	nazi	tät	der	Misc	hströme	
Nα	pazı	ιaι	uei	MISC	iisu oiile	

Uhrzeit

Zufahrt	Verkehrs- strom	Auslastungsgrad (Sp.15, 21, 24)	Aufstellplätze (Sp.2)	Verkehrsstärke (ΣSp.12)	Kapazität (Gl.(S5-10) bzw. (S5-11))	Verkehrszusam- mensetzung (Gl.(S5-5) mit Sp.9 und 11)
		x ¡[-]	n [Pkw-E]	q _{PE,i} [Pkw-E/h]	C _{PE,m} [Pkw-E/h]	f _{PE,m} [-] ´
		25	26	27	28	29
В	4	0,000		0	388	1,000
	6	0,000	0	Ç	300	2,000
С	7	0,003	0			
	8	0,239				

Beurteilung der Qualität des Verkehrsablaufs der Fahrzeugströme

Zufahrt	Verkehrs- strom	Verkehrs- zusammen- setzung (Sp.11 u. 29)	Kapazität in Pkw-E/h (Sp.14, 20,	Kapazität in Fz/h (GI.(S5-31))	Kapazitäts- reserve (GI.(S5-32))	mittlere Wartezeit (Bild S5-24)	Qualitätsstufe (Tabelle S5-1 mit Sp.34)
		f _{PE,i} bzw. f _{PE,m} [-]	23 und 28) C _{PE,i} bzw. C _{PE,m} [Pkw-E/h]	(Sp.31/Sp.30 C _i bzw. C _m [Fz/h]	(Sp.32-Sp.9) R _i bzw. R _m [Fz/h]	t _{w,i} bzw.	QSV
		30	31	32	33	34	35
A	2	1,000	1800	1800	1363	2,6	А
	3	1,000	1600	1600	1575	2,3	А
В	4	1,000	306	306	306	0,0	А
	6	1,000	564	564	564	0,0	А
С	7	1,000	760	760	758	4,7	А
	8	1,000	1800	1800	1369	2,6	А
В	4+6	1,000	388	388	388	0,0	А
С	7+8	1,000	1800	1800	1367	2,6	А
				erreichbare	Qualitätsstuf	e QSV _{Fz,ges}	А

Anlage 5.4 Formblatt S5-1d: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Keetstr. (nördl.) /B Küstermeyerstr. F12 F56 Verkehrsdaten: Datum Planung [] Analyse Uhrzeit Verkehrsregelung: Zufahrt B: Zufahrt D: Zielvorgaben: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (ohne Mittelinsel) Zufahrt Fußgänger maßgebende Summe der mittl. Wartezeit Summe der Qualitätsstufe (Tabelle S5-1 mit Sp.39) QSV bzw. Rad-Hauptströme Hauptströme (Bild S5-29 mittl. Wartezeit mit Sp.37) verkehrs-(Tabelle S5-9) Σq _{p,i} [Fz/h] ____37 q _{p,i} [Fz/h] t _{w,i} [s] 38 strom $\sum t_{w,i}[s]$ <u>39</u> 40 F1 431 893 F2 462 0 (keine Fussg.) F23 ---Α R11-1 0 (kein Radf.) R11-2 F23

Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (mit Mittelinsel)

0 (keine Fussg.)

0 (kein Radf.)

0 (keine Fussg.)

0 (kein Radf.)

0

870

0

0

437

433

F3

F4

F45 R2

F45

F5

F6

R5-1

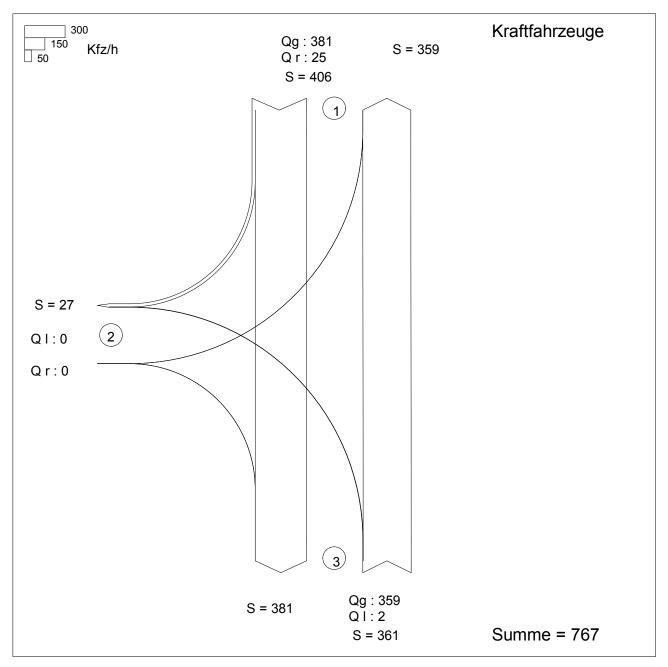
R5-2

В

С

Zufahrt	Fußgänger- bzw. Rad- verkehrs- strom	maßgebende Hauptströme (Tabelle S5-9) q _{p,i} [Fz/h] 41	mittl. Wartezeit (Bild S5-29 mit Sp.41) t _{w,i} [s] 42	Summe der mittl. Wartezeit Σt _{w,i} [s] 43	Qualitätsstufe (Tabelle S5-1 mit Sp.43 QSV 44
	F1	71	72	75	
	F2			siehe	oben
Α	F23				
	R11-1				
	R11-2				
	F23				
	F3			siehe	oben
В	F4			Sierie	oben
	F45				
	R2				
	F45				
	F5			siehe	oben
С	F6				
	R5-1				
	R5-2				
		•	erreichbare Qualitäts	stufe QSV Fg/Rad,ges	

KNOBEL Version 7.1.3


IPW INGENIEURPLANUNG Wallenhorst

Verkehrsfluss-Diagramm in Form einer Einmündung

Projekt : VUS Famila in Lohne Knotenpunkt : Keetstr. / Küstermeyerstr.

Stunde : Sph Prognose Variante 2 (2 Ausfahrten)

Datei : KP 04-PROG-V2_161208.kob

Zufahrt 1: Keetstr. (nördl.) Zufahrt 2: Küstermeyerstr. Zufahrt 3: Keetstr. (südl.)

HBS 2015, Kapitel S5: Stadtstraßen: Knotenpunkte ohne Lichtsignalanlage

Projekt : VUS Famila in Lohne

Knotenpunkt: Keetstr. / Küstermeyerstr.

Stunde : Sph Prognose Variante 2 (2 Ausfahrten)

Datei : KP 04-PROG-V2_161208.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	
2		381				1800					А
3	•	25				1600					А
4	◆ 1	0	6,5	3,8	755	360		0,0	0	0	А
6	- ►	0	5,9	3,9	394	599		0,0	0	0	Α
Misch-N		0				436	4+6	0,0	0	0	А
8	•	359				1800					А
7	₩	2	5,5	2,8	406	810		4,5	1	1	А
Misch-H		361				1800	7 + 8	2,5	1	2	А

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt

Lage des Knotenpunkte : Innerorts Alle Einstellungen nach : HBS 2015

Strassennamen:

Hauptstrasse: Keetstr. (nördl.)

Keetstr. (südl.)

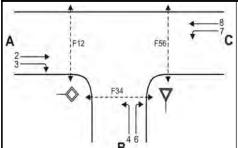
Nebenstrasse: Küstermeyerstr.

HBS 2015 S5

KNOBEL Version 7.1.3

IPW INGENIEURPLANUNG

Wallenhorst


Α

Anlage 5.4 Formblatt S5-1a: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Keetstr. (nördl.) /B Küstermeyerstr. Verkehrsdaten: Datum Planung [] Analyse Uhrzeit Verkehrsregelung: Zufahrt B: [] Zufahrt D: 🌠 🗸 Zielvorgaben: Mittlere Wartezeit t $_{\text{W}} = \underline{20 \text{ s}}$ Qualitätsstufe $\underline{\text{B}}$ **Geometrische Randbedingungen** Zufahrt Verkehrs-Fahrstreifen Fußgängerfurt strom Anzahl Aufstellänge Dreiecksinsel (RA) Mittelinsel FGÜ (ja/nein) (0/1/2)n [Pkw-E] (ja/nein) (ja/nein) 1 3 4a 4b 2 1 ---------Α 3 0 nein nein (für ja, F12 --------nein siehe Ziffer S5.6) 4 1 В 6 0 0 nein --nein (für ja, siehe Ziffer S5.6) F34 --nein 7 0 0 ------C 8 1 nein (für ja, F56 -----nein siehe Ziffer S5.6)

		Beme	ssungsv	erkehrsst	ärken und	d Verkehrszusa	mmen	setzung	·
Zufahrt	Verkehrs- strom	Rad	LV	Lkw+Bus	LkwK	Fz (Sp.5 + Sp.6 + Sp.7 + Sp.8)	Fg	Pkw-E / Fz (Gl.(S5-2) oder Gl.(S5-3) oder Gl.(S5-4))	Pkw-E (Gl. (S5-1)) (Sp.9*Sp.11)
		q _{Rad,i} [Rad/h]	q Lv,i [Pkw/h]	q _{Lkw+Bus,i} [Lkw/h]	q _{LkwK,i} [LkwK/h]	q _{Fz,i} [Fz/h]	q _{Fg,i} [Fg/h]	f _{PE,i}	q _{PE,i} [Pkw-E/h]
		5	6	7	8	9	10	11	12
	2	0	381	0	0	381		1,000	381
А	3	0	25	0	0	25		1,000	25
	F12						0		
	4	0	0	0	0	0		n. def.	0
В	6	0	0	0	0	0		n. def.	0
	F34						0		
	7	0	2	0	0	2		1,000	2
С	8	0	359	0	0	359		1,000	359
	F56						0		

Formblatt S5-1b: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Keetstr. (nördl.) /B Küstermeyerstr. F12 F56 Verkehrsdaten: Datum Planung [] Analyse Uhrzeit Zufahrt B: Verkehrsregelung: []Zufahrt D: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Zielvorgaben: Kapazität der Verkehrsströme 2 und 8 Verkehrs-Verkehrsstärke Kapazität Auslastungsgrad (Sp.13 / Sp.14) x _i [-] strom (Sp.12) q PE,i [Pkw-E/h] C_{PE,i} [Pkw-E/h] 13 14 15 1800 2 381 0,212 359 8 1800 0,199 Grundkapazität der Verkehrsströme 3, 4, 6 und 7 Verkehrs-Verkehrsstärke Hauptströme Grundkapazität Abminderungsfaktor Fg (Sp.12) q _{PE,i} [Pkw-E/h] (Bild S5-2) G_{PE,i} [Pkw-E/h] (Tabelle S5-2) (Bild S5-3) strom q _{p,i} [Fz/h] f _{f,EK,j} [-] 16 18 19 17 ohne RA mit RA ohne RA mit RA ohne RA mit RA 25 3 0 1600 1,000 7 2 406 810 1,000 (j=F34)ohne RA mit RA 6 0 393 599 1,000 4 0 754 361 1,000 (j=F12)Kapazität der Verkehrsströme 3, 6 und 7 Verkehrs-Kapazität Auslastungsgrad staufreier Zustand (Gl.(S5-7)) (Sp.18*Sp.19) C_{PE,i} [Pkw-E/h] strom (Gl.(S5-8) mit Sp.2, 16 und 20) (Sp.16/Sp.20) x [-] $p_{0,i}[-]$ 21 22 3 1600 0,016 0,984 7 810 0,002 0,997 6 599 0,000 1,000 Kapazität des Verkehrsstroms 4 Auslastungsgrad (Sp.16/Sp.23) Kapazität (Gl.(S5-9))bzw.(Sp.18*Sp.19*Sp.22) C _{PE,4} [Pkw-E/h] Verkehrsstrom X 4 [-] 4 360 0,000

Formblatt S5-1c: Beurteilung einer Einmündung nach HBS 2015 (S5)

Knotenpunkt: A-C Keetstr. (nördl.) /B Küstermeyerstr.

Verkehrsdaten: Datum

₹Planung [] Analyse Uhrzeit

Verkehrsregelung: Zufahrt B: [] 🔻

Zufahrt D:

Zielvorgaben: Mittlere Wartezeit t $_{W} = 20 \text{ s}$ Qualitätsstufe \underline{B}

Kapazität der Mischströme

			-			
Zufahrt	Verkehrs- strom	Auslastungsgrad (Sp.15, 21, 24)	Aufstellplätze (Sp.2)	Verkehrsstärke (ΣSp.12)	Kapazität (Gl.(S5-10) bzw. (S5-11))	Verkehrszusam- mensetzung (Gl.(S5-5) mit Sp.9 und 11)
		x ¡[-]	n [Pkw-E]	q _{PE,i} [Pkw-E/h]	C PE,m [Pkw-E/h]	
		25	26	27	28	29
В	4	0,000		0	436	1,000
	6	0,000	0	J		2,000
С	7	0,002	0			
	8	0,199				

Beurteilung der Qualität des Verkehrsablaufs der Fahrzeugströme

Zufahrt	Verkehrs- strom	Verkehrs- zusammen- setzung (Sp.11 u. 29)	Kapazität in Pkw-E/h	Kapazität in Fz/h (GI.(S5-31))	Kapazitäts- reserve (GI.(S5-32))	mittlere Wartezeit (Bild S5-24)	Qualitätsstufe (Tabelle S5-1 mit Sp.34)
		f _{PE,i} bzw. f _{PE,m} [-]	(Sp.14, 20, 23 und 28) C _{PE,i} bzw. C _{PE,m} [Pkw-E/h]	(Sp.31/Sp.30 C _i bzw.	(GI.(33-32)) (Sp.32-Sp.9) R _i bzw. R _m [Fz/h]	t _{w,i} bzw. t _{w,m} [s]	QSV 35
	2	1,000	1800	1800	1419	2,5	A
A	3	1,000	1600	1600	1575	2,3	А
В	4	1,000	360	360	360	0,0	А
	6	1,000	599	599	599	0,0	А
C	7	1,000	810	810	808	4,5	А
	8	1,000	1800	1800	1441	2,5	А
В	4+6	1,000	436	436	436	0,0	А
С	7+8	1,000	1800	1800	1439	2,5	А
				erreichbare	Qualitätsstuf	e QSV Fz,ges	А

Anlage 5.4 Formblatt S5-1d: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Keetstr. (nördl.) /B Küstermeyerstr. F12 F56 Verkehrsdaten: Datum Planung [] Analyse Uhrzeit Verkehrsregelung: Zufahrt B: Zufahrt D: Zielvorgaben: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (ohne Mittelinsel) Zufahrt Fußgänger maßgebende Summe der mittl. Wartezeit Summe der Qualitätsstufe (Tabelle S5-1 mit Sp.39) QSV bzw. Rad-Hauptströme Hauptströme (Bild S5-29 mittl. Wartezeit mit Sp.37) verkehrs-(Tabelle S5-9) Σq _{p,i} [Fz/h] ____37 q _{p,i} [Fz/h] t _{w,i} [s] 38 strom $\sum t_{w,i}[s]$ <u>39</u> 40 F1 359 765 F2 406 0 (keine Fussg.) F23 ---Α R11-1 0 (kein Radf.) R11-2 F23 0 F3 0 0 (keine Fussg.) В F4 0 F45 R2 ---0 (kein Radf.) ------

Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (mit Mittelinsel)

742

0 (keine Fussg.)

0 (kein Radf.)

F45

F5

F6 R5-1

R5-2

С

381

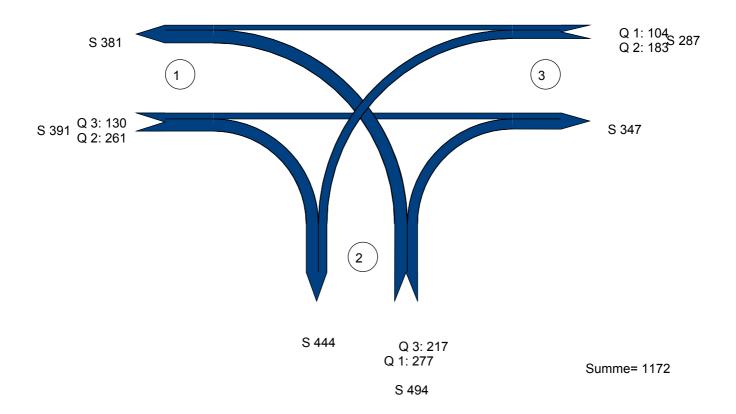
361

Zufahrt	Fußgänger- bzw. Rad- verkehrs- strom	maßgebende Hauptströme (Tabelle S5-9) q _{p,i} [Fz/h] 41	mittl. Wartezeit (Bild S5-29 mit Sp.41) t _{w,i} [s] 42	Summe der mittl. Wartezeit Σt _{w,i} [s] 43	Qualitätsstufe (Tabelle S5-1 mit Sp.43 QSV 44
	F1	71	72	75	
	F2			siehe	oben
Α	F23				
	R11-1				
	R11-2				
	F23				
	F3			siehe	oben
В	F4			Sierie	oben
	F45				
	R2				
	F45				
	F5			siehe	oben
С	F6				
	R5-1	·			
	R5-2				
	·	•	erreichbare Qualitäts	stufe QSV Fg/Rad,ges	

KNOBEL Version 7.1.3

IPW INGENIEURPLANUNG Wallenhorst

Verkehrsfluss-Diagramm

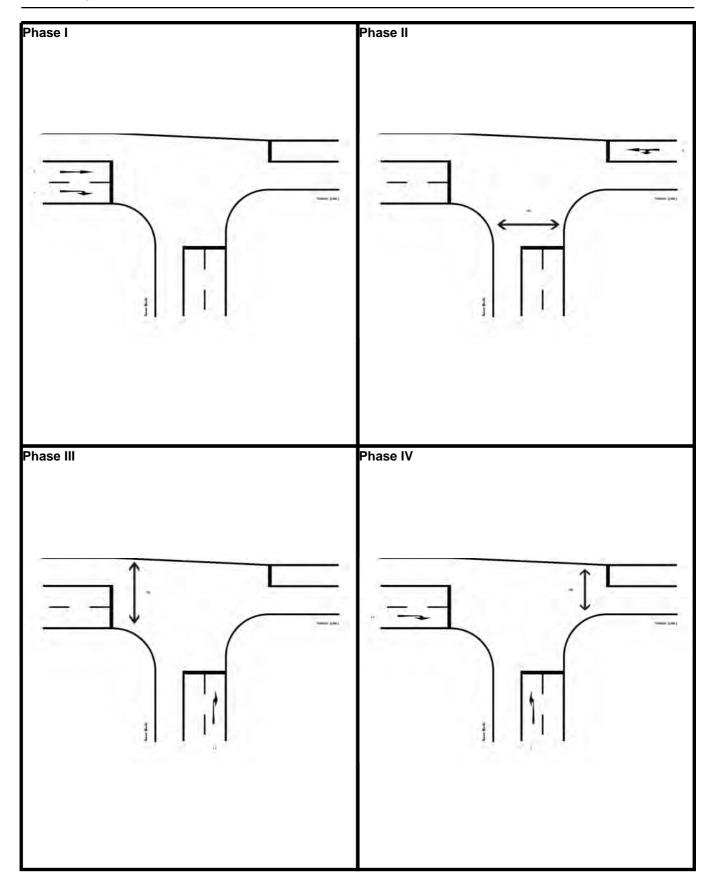

Datei : ANLAYS~4.AMP

Projekt : VUS Famila in Lohne (216213) Knoten : KP 05 Keetstr./Neuer Markt, Analyse

Stunde: Spitzenstunde

Fahrzeuge

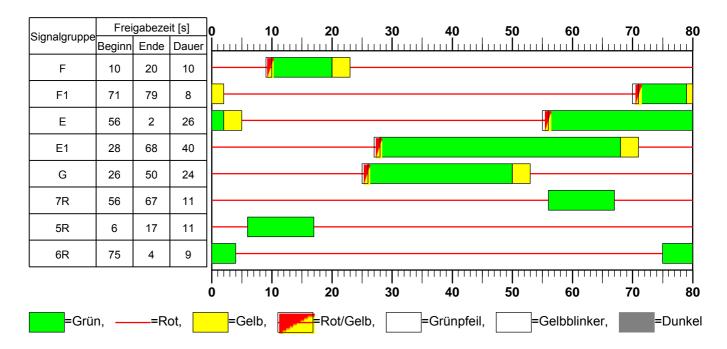
Zufahrt 1 : Keetstr. (westl.) Zufahrt 2 : Neuer Markt Zufahrt 3 : Keetstr. (östl.)


Übersicht Phaseneinteilung

Datei : ANLAYS~4.AMP

Projekt : VUS Famila in Lohne (216213) Knoten : KP 05 Keetstr./Neuer Markt, Analyse

Stunde: Spitzenstunde


Datei : ANLAYS~4.AMP

Projekt : VUS Famila in Lohne (216213) Knoten : KP 05 Keetstr./Neuer Markt, Analyse

Stunde: Spitzenstunde

Anlage 5.5

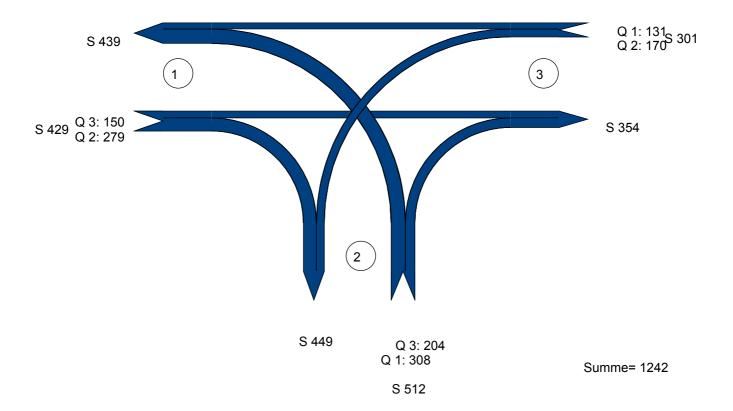
F	blett d				Knotenpunkt	mit Lichtsigr	nalanlage			
Form	blatt 1				Aı	usgangsdate	n			
	Projekt:	VUS Famila	in Lohne (2	16213)			Stadt			
l	Knotenpunkt:	KP 05 Keets	str./Neuer Ma	arkt, Analyse			Datum	12.09.2016		
-	Zeitabschnitt:	Spitzenstun	de				Bearbeiter	: kül		
Umlaufzeit	t _U : 80 [s]									
Kfz-Verke	hrsströme							1	T	T
Nr.	q_{LV}	q _{Lkw+Bus}	q_{LkwK}	q_{Kfz}	q_{SV}	f_{SV}		Anzahl	Misch-	bedingt
	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[-]		Fahrstreifen	fahrstreifen	verträglich
1	130	0	0			1,000		1	nein	nein
2	261	0	0			1,000		1	nein	ja
3	277	0	0			1,000		1	nein	ja
4	214	0	3			1,021		1	nein	ja
5	181	0	2			1,016		1	ja	ja
6	104	0	0			1,000		1	ja	nein
Kfz-Fahrs	treifen									
7.61.6	Fahrt-		L	b	f _b	R	f _R	s	f _s	L _{LA} /L _{RA}
Zufahrt	richtung	Nr.	[m]	[m]	[-]	[m]	[-]	[%]	[-]	[m]
1	rechts	11		>= 3,00	1,000	15,00	1,075	0,0	1,000	19
1	gerade	12		>= 3,00	1,000	-	1,000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	15,00	1,075	0,0	1,000	20
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	26
3	gerade	31		>= 3,00	1,000	-	1,000	0,0	1,000	
3	links	31		>= 3,00	1,000	15,00	1,075	0,0	1,000	15
Fußgänge	r-/Radfahrer				· · ·	·	<u> </u>			
	Bez.	q_{Fg}	q _{Rad}	t _{vor}	1. Furt	2. Furt	3. Furt	4. Furt		
Zufahrt	Signalgr.	[Fg/h]	[Rad/h]	[s]	Länge	Länge	Länge	Länge		
			•		[m]	[m]	[m]	[m]		
1	7R	100	0		13,10					
2	5R	100	0		14,40					
3	6R	100	0		9,90					
•					-,	L		1	I.	ı

Forn	nblatt 2				Knotenpun	Knotenpunkt mit Lichtsignalan Berechnung der Grundlagendaten für de						
	IIDIAIL Z			Berechni	ung der Grur	ndlagendater	ı für den Kfz	z-Verkehr				
	-	VUS Famila						_ Stadt				
	Knotenpunkt			arkt, Analyse					: 12.09.2016			
	Zeitabschnitt							Bearbeiter	: kül			
Kfz-Verke	ehrsströme -							T				
Nr.	Bez. SG	t _{B,i} [s]	q _{S,i} [Kfz/h]	t _{F,i} [s]	C _{0,i} [Kfz/h]	C _{D,i} [Kfz/h]	C _{PW,i} [Kfz/h]	C _{GF,i} [Kfz/h]	C _{LA,i} [Kfz/h]	C _{RA,i} [Kfz/h]		
1	F	1,800	2000	10	275							
2	F+F1	1,935	1860	18	442					415		
3	Е	1,800	2000	26	675					546		
4	E1	1,975	1823	40	934					908		
5	G	1,967	1830	24	572							
6	G	1,800	2000	24	625							
Kfz-Verke	ehrsströme -	Kapazitäten	(fahrstreife	nbezogen)								
Nr.	q _j [Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]	q _{LA} [Kfz/h]	n _k [Kfz]	N _{MS,90,j} [Kfz/h]	C _{K,j} [Kfz/h]	C _{M,j} [Kfz/h]	C _j [Kfz/h]			
11	261		261			10,588			415			
12	130	130				6,224			275			
21	217		217			5,818			908			
22	277			277		9,900			546			
31	211			211		3,300						
<u> </u>	287	104		183		9,795		590				
		104						590				
		104						590				
		104						590				
		104						590				
		104						590				
		104						590				
		104						590				
		104						590				

					Knotenpunk	t mit Lichtsig	ınalanlage			
Form	olatt 3				Berechnung	der Verkehrs	squalitäten			
	Proiekt	: VUS Famila	in Lohne (2°	16213)				Stadt		
ŀ	=	: KP 05 Keets						="	: 12.09.2016	
		: Spitzenstun						Bearbeiter	-	
		Verkehrsqu		rstreifenbez	ogen)					
	Bez.	Ströme	q _j	x _j	f _{A,j}	$N_{GE,j}$	N _{MS,j}	L _{95,j}	t _{W,j}	QSV
Nr.	SG		[Kfz/h]	, [-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	F+F1	2	261	0,629	0,22	1,090	6,332	64	37,5	C
12	F	1	130	0,473	0,14	0,534	3,199	37	38,8	C
21	E1	4	217	0,239	0,50	0,178	2,925	36	12,1	A
22	E	3	277	0,507	0,27	0,626	5,820	59	28,7	B
31	G	5, 6	287	0,486	0,31	0,571	5,742	59	25,8	В
<u> </u>				<u> </u>						<u></u>
Gesamt			1172						28,0	
Fußgänge	r- /Radfahre	erfurten								
Zufahrt	Bez.	q _{Fg}	q_Rad	Anzahl	t _{W,max}					QSV
Zufahrt	SG	[Fg/h]	[Rad/h]	Furten	[s]					[-]
1	7R	100	0	1	69					D
2	5R	100	0	1	69					D
3	6R	100	0	1	71					E
	OI C	100	0		, ,					

Verkehrsfluss-Diagramm

Datei : PR43B1~1.AMP


Projekt: VUS Famila in Lohne (216213)

Knoten: KP 05 Keetstr./Neuer Markt, Prognose Variante 1 (1 Ausfahrt)

Stunde: Spitzenstunde

Fahrzeuge

Zufahrt 1 : Keetstr. (westl.) Zufahrt 2 : Neuer Markt Zufahrt 3 : Keetstr. (östl.)

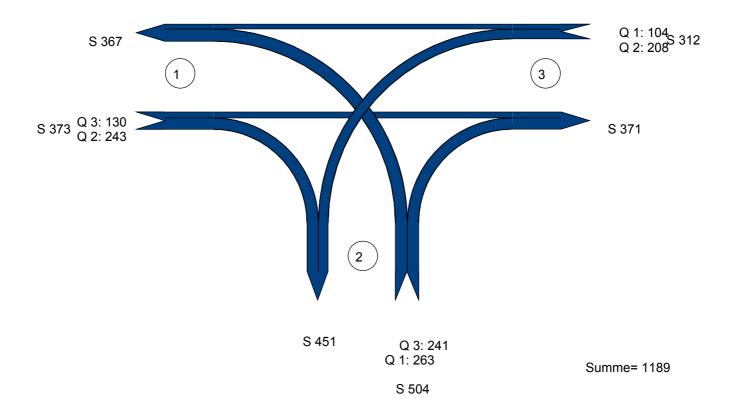
	LI-11 A				Knotenpunkt	mit Lichtsigr	nalanlage			
Form	blatt 1				Au	usgangsdate	n			
	-	VUS Famila					Stadt			
	Knotenpunkt:			arkt, Prognos	se Variante 1	(1 Ausfahrt)		<u> 21.12.2016</u>		
	Zeitabschnitt:	Spitzenstun	de				Bearbeiter	: kül		
Umlaufzeit										
Kfz-Verke	hrsströme							I		
Nr.	q_{LV}	q _{Lkw+Bus}	q_{LkwK}	q_{Kfz}	q_{SV}	f_{SV}		Anzahl	Misch-	bedingt
	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[-]		Fahrstreifen	fahrstreifen	verträglich
1	150	0	0			1,000		1	nein	nein
2	279	0	0			1,000		1	nein	ja
3	308	0	0			1,000		1	nein	ja
4	201	0	3			1,022		1	nein	ja
5	168	0	2			1,018		1	ja	ja
6	131	0	0			1,000		1	ja	nein
Kfz-Fahrs	treifen									
Zufahrt	Fahrt-	Nr.	L	b	f _b	R	f_R	s	f _s	L _{LA} /L _{RA}
Zuidilit	richtung	INI.	[m]	[m]	[-]	[m]	[-]	[%]	[-]	[m]
1	rechts	11		>= 3,00	1,000	15,00	1,075	0,0	1,000	19
1	gerade	12		>= 3,00	1,000	-	1,000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	15,00	1,075	0,0	1,000	20
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	26
3	gerade	31		>= 3,00	1,000	-	1,000	0,0	1,000	
3	links	31		>= 3,00	1,000	15,00	1,075	0,0	1,000	15
Fußgänge	r-/Radfahrer	furten								
	Bez.	q _{Fg}	q _{Rad}	t _{vor}	1. Furt	2. Furt	3. Furt	4. Furt		
Zufahrt	Signalgr.	[Fg/h]	[Rad/h]	[s]	Länge	Länge	Länge	Länge		
					[m]	[m]	[m]	[m]		
1	7R	100	0		13,10					
2	5R	100	0		14,40					
3	6R	100	0		9,90					

	. l. l - 44 O				gnalanlage					
Form	ıblatt 2			Berechni	ung der Grur	ndlagendater	ı für den Kfz	-Verkehr		
	Projekt:	VUS Famila	in Lohne (21	16213)		-		_ Stadt	•	
	Knotenpunkt:				e Variante 1	(1 Ausfahrt)			21.12.2016	
	Zeitabschnitt:	Spitzenstun	de					Bearbeiter	: kül	
Kfz-Verke	hrsströme -	Kapazitäten	(strombezo	gen)						
	Bez.	t _{B,i}	$q_{S,i}$	t _{F,i}	C _{0,i}	$C_{D,i}$	C _{PW,i}	$C_{GF,i}$	$C_{LA,i}$	$C_{RA,i}$
Nr.	SG	[s]	[Kfz/h]	[s]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]
1	F	1,800	2000	10	275					
2	F+F1	1,935	1860	18	442					415
3	E	1,800	2000	26	675					546
4	E1	1,978	1820	40	933					906
5	G	1,969	1828	24	571					
6	G	1,800	2000	24	625					
		1,000	2000	27	020					
Kfz-Verke	hrsströme -	Kapazitäten	(fahrstreife	nbezogen)						
	ehrsströme -	Kapazitäten q _G	(fahrstreife	nbezogen)	n _k	N _{MS,90,j}	C _{K,j}	C _{M,j}	C _j	
Kfz-Verk e Nr.			_		n _k [Kfz]	N _{MS,90,j} [Kfz/h]	C _{K,j} [Kfz/h]	C _{M,j} [Kfz/h]	C _j [Kfz/h]	
	q _j	q_G	q _{RA}	q _{LA}			•			
Nr.	q _j [Kfz/h]	q_G	q _{RA} [Kfz/h]	q _{LA}		[Kfz/h]	•		[Kfz/h]	
Nr. 11	q _j [Kfz/h] 279	q _G [Kfz/h]	q _{RA} [Kfz/h]	q _{LA}		[Kfz/h] 11,511	•		[Kfz/h] 415	
Nr. 11 12	q _j [Kfz/h] 279 150 204	q _G [Kfz/h]	q _{RA} [Kfz/h] 279	q _{LA} [Kfz/h]		[Kfz/h] 11,511 7,156 5,522	•		[Kfz/h] 415 275	
Nr. 11 12 21 22	q _j [Kfz/h] 279 150 204 308	q _G [Kfz/h]	q _{RA} [Kfz/h] 279	q _{LA} [Kfz/h]		[Kfz/h] 11,511 7,156 5,522 11,062	•	[Kfz/h]	[Kfz/h] 415 275 906	
Nr. 11 12 21	q _j [Kfz/h] 279 150 204	q _G [Kfz/h]	q _{RA} [Kfz/h] 279	q _{LA} [Kfz/h]		[Kfz/h] 11,511 7,156 5,522	•		[Kfz/h] 415 275 906	
Nr. 11 12 21 22	q _j [Kfz/h] 279 150 204 308	q _G [Kfz/h]	q _{RA} [Kfz/h] 279	q _{LA} [Kfz/h]		[Kfz/h] 11,511 7,156 5,522 11,062	•	[Kfz/h]	[Kfz/h] 415 275 906	
Nr. 11 12 21 22	q _j [Kfz/h] 279 150 204 308	q _G [Kfz/h]	q _{RA} [Kfz/h] 279	q _{LA} [Kfz/h]		[Kfz/h] 11,511 7,156 5,522 11,062	•	[Kfz/h]	[Kfz/h] 415 275 906	
Nr. 11 12 21 22	q _j [Kfz/h] 279 150 204 308	q _G [Kfz/h]	q _{RA} [Kfz/h] 279	q _{LA} [Kfz/h]		[Kfz/h] 11,511 7,156 5,522 11,062	•	[Kfz/h]	[Kfz/h] 415 275 906	
Nr. 11 12 21 22	q _j [Kfz/h] 279 150 204 308	q _G [Kfz/h]	q _{RA} [Kfz/h] 279	q _{LA} [Kfz/h]		[Kfz/h] 11,511 7,156 5,522 11,062	•	[Kfz/h]	[Kfz/h] 415 275 906	
Nr. 11 12 21 22	q _j [Kfz/h] 279 150 204 308	q _G [Kfz/h]	q _{RA} [Kfz/h] 279	q _{LA} [Kfz/h]		[Kfz/h] 11,511 7,156 5,522 11,062	•	[Kfz/h]	[Kfz/h] 415 275 906	
Nr. 11 12 21 22	q _j [Kfz/h] 279 150 204 308	q _G [Kfz/h]	q _{RA} [Kfz/h] 279	q _{LA} [Kfz/h]		[Kfz/h] 11,511 7,156 5,522 11,062	•	[Kfz/h]	[Kfz/h] 415 275 906	
Nr. 11 12 21 22	q _j [Kfz/h] 279 150 204 308	q _G [Kfz/h]	q _{RA} [Kfz/h] 279	q _{LA} [Kfz/h]		[Kfz/h] 11,511 7,156 5,522 11,062	•	[Kfz/h]	[Kfz/h] 415 275 906	
Nr. 11 12 21 22	q _j [Kfz/h] 279 150 204 308	q _G [Kfz/h]	q _{RA} [Kfz/h] 279	q _{LA} [Kfz/h]		[Kfz/h] 11,511 7,156 5,522 11,062	•	[Kfz/h]	[Kfz/h] 415 275 906	
Nr. 11 12 21 22	q _j [Kfz/h] 279 150 204 308	q _G [Kfz/h]	q _{RA} [Kfz/h] 279	q _{LA} [Kfz/h]		[Kfz/h] 11,511 7,156 5,522 11,062	•	[Kfz/h]	[Kfz/h] 415 275 906	
Nr. 11 12 21 22	q _j [Kfz/h] 279 150 204 308	q _G [Kfz/h]	q _{RA} [Kfz/h] 279	q _{LA} [Kfz/h]		[Kfz/h] 11,511 7,156 5,522 11,062	•	[Kfz/h]	[Kfz/h] 415 275 906	
Nr. 11 12 21 22	q _j [Kfz/h] 279 150 204 308	q _G [Kfz/h]	q _{RA} [Kfz/h] 279	q _{LA} [Kfz/h]		[Kfz/h] 11,511 7,156 5,522 11,062	•	[Kfz/h]	[Kfz/h] 415 275 906	
Nr. 11 12 21 22	q _j [Kfz/h] 279 150 204 308	q _G [Kfz/h]	q _{RA} [Kfz/h] 279	q _{LA} [Kfz/h]		[Kfz/h] 11,511 7,156 5,522 11,062	•	[Kfz/h]	[Kfz/h] 415 275 906	
Nr. 11 12 21 22	q _j [Kfz/h] 279 150 204 308	q _G [Kfz/h]	q _{RA} [Kfz/h] 279	q _{LA} [Kfz/h]		[Kfz/h] 11,511 7,156 5,522 11,062	•	[Kfz/h]	[Kfz/h] 415 275 906	
Nr. 11 12 21 22	q _j [Kfz/h] 279 150 204 308	q _G [Kfz/h]	q _{RA} [Kfz/h] 279	q _{LA} [Kfz/h]		[Kfz/h] 11,511 7,156 5,522 11,062	•	[Kfz/h]	[Kfz/h] 415 275 906	
Nr. 11 12 21 22	q _j [Kfz/h] 279 150 204 308	q _G [Kfz/h]	q _{RA} [Kfz/h] 279	q _{LA} [Kfz/h]		[Kfz/h] 11,511 7,156 5,522 11,062	•	[Kfz/h]	[Kfz/h] 415 275 906	

LAIM	1.44.0	Knotenpunkt mit Lichtsignalanlage									
FOITIN	olatt 3				Berechnung	der Verkehr	squalitäten				
	Proiekt	: VUS Famila	in Lohne (21	16213)	<u>-</u>			Stadt	:		
ŀ	-	: KP 05 Keets			se Variante 1	(1 Ausfahrt)			: 21.12.2016		
		: Spitzenstun		<u>,</u>	o vananto i	(- / 1001011111)		Bearbeiter			
		Verkehrsqu		rstreifenbez	ogen)						
	Bez.	Ströme	q _j	x _j	f _{A,j}	$N_{GE,j}$	N _{MS,j}	L _{95,j}	t _{W,j}	QSV	
Nr.	SG	Ou on io	ام [Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	_ _{95,J} [m]	[s]	[-]	
11	F+F1	2	279	0,672	0,22	1,360	7,027	69	40,2	C	
										C	
12	F	1	150	0,545	0,14	0,733	3,841	43	41,8		
21	E1	4	204	0,225	0,50	0,164	2,729	34	12,0	A	
22	E	3	308	0,564	0,27	0,807	6,688	66	30,3	В	
31	G	5, 6	301	0,508	0,31	0,627	6,094	62	26,3	В	
Gesamt		1									
			1242						29,9		
, - Jennie			1242						29,9		
	r- /Radfahre	erfurten	1242						29,9		
Fußgänge	r- /Radfahre			Anzahl	tw may				29,9	QSV	
	Bez.	q _{Fg}	q _{Rad}	Anzahl Furten	t _{W,max}				29,9	QSV [-]	
Fußgänge Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Furten	[s]				29,9	[-]	
Fußgänge Zufahrt 1	Bez. SG 7R	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Furten 1	[s]				29,9	[-] D	
Fußgänge Zufahrt 1 2	Bez. SG 7R 5R	q _{Fg} [Fg/h] 100	q _{Rad} [Rad/h] 0	Furten 1 1	[s] 69 69				29,9	[-] D D	
Fußgänge Zufahrt 1	Bez. SG 7R	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Furten 1	[s]				29,9	[-] D	
Fußgänge Zufahrt 1 2	Bez. SG 7R 5R	q _{Fg} [Fg/h] 100	q _{Rad} [Rad/h] 0	Furten 1 1	[s] 69 69				29,9	[-] D D	
Fußgänge Zufahrt 1 2	Bez. SG 7R 5R	q _{Fg} [Fg/h] 100	q _{Rad} [Rad/h] 0	Furten 1 1	[s] 69 69				29,9	[-] D D	
Fußgänge Zufahrt 1 2	Bez. SG 7R 5R	q _{Fg} [Fg/h] 100	q _{Rad} [Rad/h] 0	Furten 1 1	[s] 69 69				29,9	[-] D	
Fußgänge Zufahrt 1 2	Bez. SG 7R 5R	q _{Fg} [Fg/h] 100	q _{Rad} [Rad/h] 0	Furten 1 1	[s] 69 69				29,9	[-] D	
Fußgänge Zufahrt 1 2	Bez. SG 7R 5R	q _{Fg} [Fg/h] 100	q _{Rad} [Rad/h] 0	Furten 1 1	[s] 69 69				29,9	[-] D	
Fußgänge Zufahrt 1 2	Bez. SG 7R 5R	q _{Fg} [Fg/h] 100	q _{Rad} [Rad/h] 0	Furten 1 1	[s] 69 69				29,9	[-] D	
Fußgänge Zufahrt 1 2	Bez. SG 7R 5R	q _{Fg} [Fg/h] 100	q _{Rad} [Rad/h] 0	Furten 1 1	[s] 69 69				29,9	[-] D D	
Fußgänge Zufahrt 1 2	Bez. SG 7R 5R	q _{Fg} [Fg/h] 100	q _{Rad} [Rad/h] 0	Furten 1 1	[s] 69 69				29,9	[-] D D	
Fußgänge Zufahrt 1 2	Bez. SG 7R 5R	q _{Fg} [Fg/h] 100	q _{Rad} [Rad/h] 0	Furten 1 1	[s] 69 69				29,9	[-] D	
Fußgänge Zufahrt 1 2	Bez. SG 7R 5R	q _{Fg} [Fg/h] 100	q _{Rad} [Rad/h] 0	Furten 1 1	[s] 69 69				29,9	[-] D	
Fußgänge Zufahrt 1 2	Bez. SG 7R 5R	q _{Fg} [Fg/h] 100	q _{Rad} [Rad/h] 0	Furten 1 1	[s] 69 69				29,9	[-] D	
Fußgänge Zufahrt 1 2	Bez. SG 7R 5R	q _{Fg} [Fg/h] 100	q _{Rad} [Rad/h] 0	Furten 1	[s] 69 69				29,9	[-] D	
Fußgänge Zufahrt 1 2	Bez. SG 7R 5R	q _{Fg} [Fg/h] 100	q _{Rad} [Rad/h] 0	Furten 1	[s] 69 69				29,9	[-] D	
Fußgänge Zufahrt 1 2	Bez. SG 7R 5R	q _{Fg} [Fg/h] 100	q _{Rad} [Rad/h] 0	Furten 1	[s] 69 69				29,9	[-] D D	
Fußgänge Zufahrt 1 2	Bez. SG 7R 5R	q _{Fg} [Fg/h] 100	q _{Rad} [Rad/h] 0	Furten 1	[s] 69 69				29,9	[-] D	
Fußgänge Zufahrt 1 2	Bez. SG 7R 5R	q _{Fg} [Fg/h] 100	q _{Rad} [Rad/h] 0	Furten 1	[s] 69 69				29,9	[-] D	

Verkehrsfluss-Diagramm

Datei : PROG-V~3.AMP


Projekt: VUS Famila in Lohne (216213)

Knoten: KP 05 Keetstr./Neuer Markt, Prognose Variante 2 (2 Ausfahrten)

Stunde: Spitzenstunde

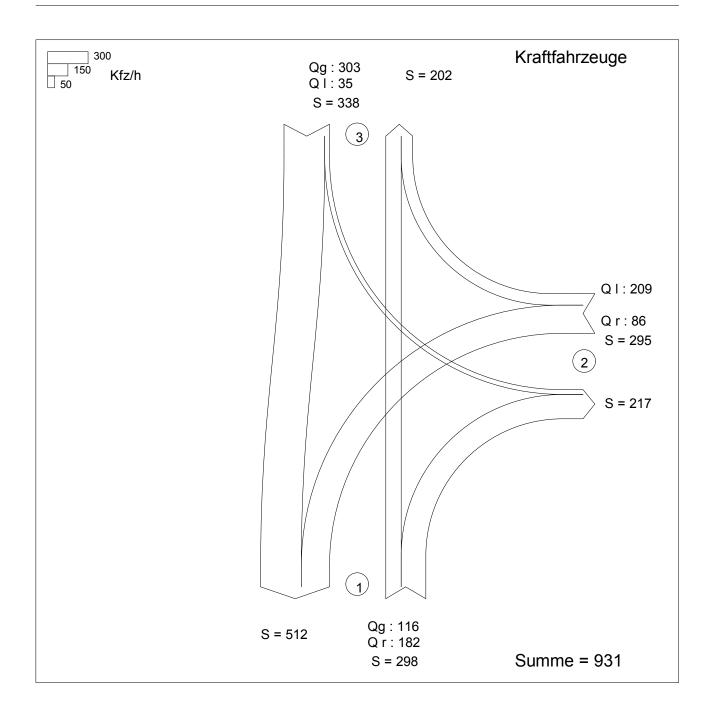
Fahrzeuge

Zufahrt 1 : Keetstr. (westl.) Zufahrt 2 : Neuer Markt Zufahrt 3 : Keetstr. (östl.)

F	blett d				Knotenpunkt	mit Lichtsign	alanlage			
Form	blatt 1				Aı	usgangsdater	า			
	Projekt:	VUS Famila	in Lohne (2°	16213)			Stadt			
	•			arkt, Prognos	se Variante 2	(2 Ausfahrte	n) Datum:	21.12.2016		
	Zeitabschnitt:	Spitzenstun	de				Bearbeiter	: kül		
Umlaufzeit										
Kfz-Verke	hrsströme							I		
Nr.	q _{LV} [Kfz/h]	q _{Lkw+Bus} [Kfz/h]	q _{LkwK} [Kfz/h]	q _{Kfz} [Kfz/h]	q _{SV} [Kfz/h]	f _{SV} [-]		Anzahl Fahrstreifen	Misch- fahrstreifen	bedingt verträglich
1	130	0	0			1,000		1	nein	nein
2	243	0	0			1,000		1	nein	ja
3	263	0	0			1,000		1	nein	ja
4	238	0	3			1,019		1	nein	ja
5	206	0	2			1,014		1	ja	ja
6	104	0	0			1,000		1	ja	nein
Kfz-Fahrs	traifan									
INIZ-I GIII 3	Fahrt-		L	b	f _b	R	f _R	s	f _s	L _{LA} /L _{RA}
Zufahrt	richtung	Nr.	[m]	[m]	'ь [-]	[m]	'R [-]	[%]	[-]	[m]
1	rechts	11		>= 3,00	1,000	15,00	1,075	0,0	1,000	19
1	gerade	12		>= 3,00	1,000	-	1,000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	15,00	1,075	0,0	1,000	20
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	26
3	gerade	31		>= 3,00	1,000	-	1,000	0,0	1,000	
3	links	31		>= 3,00	1,000	15,00	1,075	0,0	1,000	15
Fußgänge	r-/Radfahrer	furten								
	Bez.	q_{Fg}	q_Rad	t _{vor}	1. Furt	2. Furt	3. Furt	4. Furt		
Zufahrt	Signalgr.	[Fg/h]	[Rad/h]	[s]	Länge	Länge	Länge	Länge		
					[m]	[m]	[m]	[m]		
1	7R	100	0		13,10					
2	5R	100	0		14,40					
3	6R	100	0		9,90					

Forn	nblatt 2				gnalanlage					
	IIDIAII Z			Berechni	ung der Grur	ndlagendater	ı für den Kfz	z-Verkehr		
	-	VUS Famila						_ Stadt		
	Knotenpunkt			arkt, Prognos	e Variante 2	(2 Ausfahrte	n)		<u>21.12.2016</u>	
	Zeitabschnitt							Bearbeiter	: kül	
Kfz-Verke	ehrsströme -							T		
Nr.	Bez. SG	t _{B,i} [s]	q _{S,i} [Kfz/h]	t _{F,i} [s]	C _{0,i} [Kfz/h]	C _{D,i} [Kfz/h]	C _{PW,i} [Kfz/h]	C _{GF,i} [Kfz/h]	C _{LA,i} [Kfz/h]	C _{RA,i} [Kfz/h]
1	F	1,800	2000	10	275					
2	F+F1	1,935	1860	18	442					415
3	Е	1,800	2000	26	675					546
4	E1	1,971	1826	40	936					909
5	G	1,963	1834	24	573					
6	G	1,800	2000	24	625					
Kfz-Verke	ehrsströme -	Kapazitäten	(fahrstreife	nbezogen)						
Nr.	q _j [Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]	q _{LA} [Kfz/h]	n _k [Kfz]	N _{MS,90,j} [Kfz/h]	C _{K,j} [Kfz/h]	C _{M,j} [Kfz/h]	C _j [Kfz/h]	
11	243		243	. ,		9,754			415	
12	130	130				6,224			275	
21	241		241			6,379			909	
22	263			263					546	
31						9,400			0-10	
	312	104		208		9,400 10,685		589	040	
		104						589	010	
		104						589	010	
		104						589	010	
		104						589	010	
		104						589		
		104						589		
		104						589		
		104						589		

					Knotenpunk	kt mit Lichtsic	Knotenpunkt mit Lichtsignalanlage									
Form	blatt 3	Berechnung der Verkehrsqualitäten														
	Projekt	:: <u>VUS Famila</u>	in Lohne (2°	16213)	20.00		o quantator.	Stadt								
k	-	:: <u>KP 05 Keets</u>			se Variante 2	(2 Ausfahrtei	n)	='	 : <u>21.12.2016</u>							
		:: Spitzenstun		ariti, i rognoc	o vananto L	\L / taolamto		Bearbeiter: kül								
		Verkehrsqu		rstreifenbez	ogen)			200.00.00								
	Bez.	Ströme	q _j		f _{A,j}	$N_{GE,j}$	N _{MS,j}	1	t _{W,j}	QSV						
Nr.	SG	Ottomic	۹ _ا [Kfz/h]	X _j		[Kfz]	[Kfz]	L _{95,j}								
11	F+F1	2		[-] 0,586	[-] 0,22	0,887	5,712	[m] 59	[s] 35,5	[-] C						
			243													
12	F	1	130	0,473	0,14	0,534	3,199	37	38,8	С						
21	E1	4	241	0,265	0,50	0,206	3,305	39	12,4	Α						
22	E	3	263	0,482	0,27	0,559	5,452	56	28,0	В						
31	G	5, 6	312	0,530	0,31	0,691	6,405	65	26,9	В						
				_												
Gesamt			1189						27,3							
Gesaint			1109						21,3							
.	/D // /															
Fußgangei	r- /Radfahre				, 1											
Zufahrt	Bez.	q_{Fg}	q_Rad	Anzahl	t _{W,max}					QSV						
	SG	[Fg/h]	[Rad/h]	Furten	[s]					[-]						
1	7R	100	0	1	69					D						
2	5R	100	0	1	69					D						
3	6R	100	0	1	71					E						


Verkehrsfluss-Diagramm in Form einer Einmündung

Projekt : VUS Famila in Lohne

Knotenpunkt: Meyerhofstr. / Falkenbergstr.

Stunde : Sph Analyse

Datei : KP 06-ANALYSE_160802.kob

HBS 2015, Kapitel S5: Stadtstraßen: Knotenpunkte ohne Lichtsignalanlage

Projekt : VUS Famila in Lohne

Knotenpunkt: Meyerhofstr. / Falkenbergstr.

Stunde : Sph Analyse

Datei : KP 06-ANALYSE_160802.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	
2		118				1800					А
3	*	183				1600					А
4	▼	210	6,5	3,2	545	511		12,0	3	4	В
6	_	86	5,9	3,0	207	932		4,3	1	1	Α
Misch-N		296				718	4 + 6	8,5	3	4	А
8	•	304				1800					А
7	V	35	5,5	2,8	298	916		4,1	1	1	А
Misch-H		339				1800	7 + 8	2,5	1	2	А

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt :

Lage des Knotenpunkte : Innerorts Alle Einstellungen nach : HBS 2015

Strassennamen:

Hauptstrasse: Meyerhofstr. (südl.)

Meyerhofstr. (nördl.)

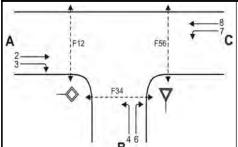
Nebenstrasse: Falkenbergstr.

HBS 2015 S5

KNOBEL Version 7.1.1

IPW INGENIEURPLANUNG Wallenhorst

В


Anlage 5.6 Formblatt S5-1a: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Meyerhofstr. (südl/B Falkenbergstr. Verkehrsdaten: Datum [] Planung Manalyse Uhrzeit Verkehrsregelung: Zufahrt B: 🇹 🗸 Zufahrt D: 🇹 🗸 Mittlere Wartezeit t $_{W} = 20 \text{ s}$ Qualitätsstufe \underline{B} Zielvorgaben: Geometrische Randbedingungen Zufahrt Verkehrs-Fahrstreifen Fußgängerfurt strom Anzahl Aufstellänge Dreiecksinsel (RA) Mittelinsel FGÜ (ja/nein) (0/1/2)n [Pkw-E] (ja/nein) (ja/nein) 1 3 4a 4b 2 1 ---------Α 3 0 nein nein (für ja, F12 --------nein siehe Ziffer S5.6) 4 1 В 6 0 2 nein --nein (für ja, siehe Ziffer S5.6) F34 --nein 7 0 0 ------C 8 1 --nein (für ja, F56 nein siehe Ziffer S5.6)

	Bemessungsverkehrsstärken und Verkehrszusammensetzung											
Zufahrt	Verkehrs- strom	Rad	LV	Lkw+Bus	LkwK	Fz (Sp.5 + Sp.6 + Sp.7 + Sp.8)	Fg	Pkw-E / Fz (Gl.(S5-2) oder Gl.(S5-3) oder Gl.(S5-4))	Pkw-E (Gl. (S5-1)) (Sp.9*Sp.11)			
		q _{Rad,i} [Rad/h]	q Lv,i [Pkw/h]	q _{Lkw+Bus,i} [Lkw/h]	q _{LkwK,i} [LkwK/h]	q _{Fz,i} [Fz/h]	q _{Fg,i} [Fg/h]	f _{PE,i}	q _{PE,i} [Pkw-E/h]			
		5	6	7	8	9	10	11	12			
	2	0	112	4	0	116		1,017	118			
А	3	0	181	1	0	182		1,005	183			
	F12						0					
	4	0	207	2	0	209		1,005	210			
В	6	0	86	0	0	86		1,000	86			
	F34						0					
	7	0	35	0	0	35		1,000	35			
С	8	0	302	1	0	303		1,003	304			
	F56						0					

Formblatt S5-1b: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Meyerhofstr. (südl/B Falkenbergstr. F12 F56 Verkehrsdaten: Datum Uhrzeit [] Planung Y Analyse Zufahrt B: Verkehrsregelung: []Zufahrt D: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Zielvorgaben: Kapazität der Verkehrsströme 2 und 8 Verkehrsstärke Kapazität Verkehrs-Auslastungsgrad (Sp.13 / Sp.14) x _i [-] strom (Sp.12) q PE,i [Pkw-E/h] C_{PE,i} [Pkw-E/h] 13 14 15 1800 0,066 2 118 8 304 1800 0,169 Grundkapazität der Verkehrsströme 3, 4, 6 und 7 Verkehrs-Verkehrsstärke Hauptströme Grundkapazität Abminderungsfaktor Fg (Sp.12) q _{PE,i} [Pkw-E/h] (Bild S5-2) G_{PE,i} [Pkw-E/h] (Tabelle S5-2) (Bild S5-3) strom q _{p,i} [Fz/h] f _{f,EK,j} [-] 16 17 18 19 ohne RA mit RA ohne RA mit RA ohne RA mit RA 3 183 0 1600 1,000 7 35 298 916 1,000 (j=F34)ohne RA mit RA 6 86 207 932 1,000 4 210 545 536 1,000 (j=F12)Kapazität der Verkehrsströme 3, 6 und 7 Verkehrs-Kapazität Auslastungsgrad staufreier Zustand (Gl.(S5-7)) (Sp.18*Sp.19) C_{PE,i} [Pkw-E/h] (GI.(S5-8) strom mit Sp.2, 16 und 20) (Sp.16/Sp.20) x [-] $p_{0,i}[-]$ 21 22 3 1600 0,886 0,114 7 916 0,038 0,954 6 932 0,092 0,908 Kapazität des Verkehrsstroms 4 Auslastungsgrad (Sp.16/Sp.23) Kapazität (Gl.(S5-9))bzw.(Sp.18*Sp.19*Sp.22) C _{PE,4} [Pkw-E/h] Verkehrsstrom X 4 [-] 4 511 0,411

KNOBEL	Version	7.	1.	1
	V CI SIOII			

Formblatt S5-1c: Beurteilung einer Einmündung nach HBS 2015 (S5)

Knotenpunkt: A-C Meyerhofstr. (südl/B Falkenbergstr.

Verkehrsdaten: Datum

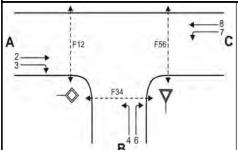
[] Planung 🥻 Analyse Uhrzeit

Verkehrsregelung: Zufahrt B:

✓
[]

Zufahrt D:

Zielvorgaben: Mittlere Wartezeit t $_{W} = 20 \text{ s}$ Qualitätsstufe \underline{B}


Kapazität der Mischströme

Zufahrt	Verkehrs- strom	Auslastungsgrad (Sp.15, 21, 24)	Aufstellplätze (Sp.2)	Verkehrsstärke (ΣSp.12)	Kapazität (Gl.(S5-10) bzw. (S5-11))	Verkehrszusam- mensetzung (Gl.(S5-5) mit Sp.9 und 11)
		x ¡[-]	n [Pkw-E]	q _{PE,i} [Pkw-E/h]	C _{PE,m} [Pkw-E/h]	f _{PE,m} [-]
		25	26	27	28	29
В	4	0,411		296	718	1,003
	6	0,092	2		, 10	2,000
С	7	0,038	0			
	8	0,169				

Beurteilung der Qualität des Verkehrsablaufs der Fahrzeugströme

Zufahrt	Verkehrs- strom zusammen-		Kapazität in Pkw-E/h	Kapazität in Fz/h	Kapazitäts- reserve	mittlere Wartezeit	Qualitätsstufe (Tabelle S5-1
		setzung (Sp.11 u. 29) f _{PE,i} bzw.	(Sp.14, 20, 23 und 28) C _{PE,i} bzw.	(Gl.(S5-31)) (Sp.31/Sp.30 C _i bzw.	(Gl.(S5-32)) (Sp.32-Sp.9) R _i bzw.	(Bild S5-24) t _{w,i} bzw.	mit Sp.34) QSV
		f _{PE,m} [-]	C _{PE,m} [Pkw-E/h]	C _m [Fz/h] 32	R _m [Fz/h] 33	t _{w,m} [s]	35
		30	31	32	33	34	33
A	2	1,017	1800	1769	1653	2,2	А
	3	1,005	1600	1591	1409	2,6	А
В	4	1,005	511	509	300	12,0	В
	6	1,000	932	932	846	4,3	А
С	7	1,000	916	916	881	4,1	А
	8	1,003	1800	1794	1491	2,4	А
В	4+6	1,003	718	716	421	8,5	А
С	7+8	1,003	1800	1795	1457	2,5	А
erreichbare Qualitätsstufe QSV _{Fz,ges}							

Formblatt S5-1d: Beurteilung einer Einmündung nach HBS 2015 (S5)

Knotenpunkt: A-C Meyerhofstr. (südl/B Falkenbergstr.

Verkehrsdaten: Datum

[] Planung Manalyse Uhrzeit

Zufahrt B: Verkehrsregelung:

Zufahrt D:

Zielvorgaben: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B

Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (ohne Mittelinsel)

Zufahrt	Fußgänger bzw. Rad- verkehrs- strom	maßgebende Hauptströme (Tabelle S5-9) q _{p,i} [Fz/h]	Summe der Hauptströme Σq _{p,i} [Fz/h]	mittl. Wartezeit (Bild S5-29 mit Sp.37) t _{w,i} [s]	Summe der mittl. Wartezeit ∑t _{w,i} [s]	Qualitätsstufe (Tabelle S5-1 mit Sp.39) QSV	
		36	37	38	39	40	
	F1	303	601				
	F2	298	001		0 (keine Fussg.)		
Α	F23						
	R11-1				0 (kein Radf.)		
	R11-2				0 (Keili Kaul.)		
	F23						
	F3	0	295		0 (keine Fussg.)		
В	F4	295	293		o (keille russg.)		
	F45						
	R2				0 (kein Radf.)		
	F45						
	F5	116	454		0 (keine Fussg.)		
С	F6	338	434				
	R5-1				O (koin Badf)		
	R5-2				0 (kein Radf.)		

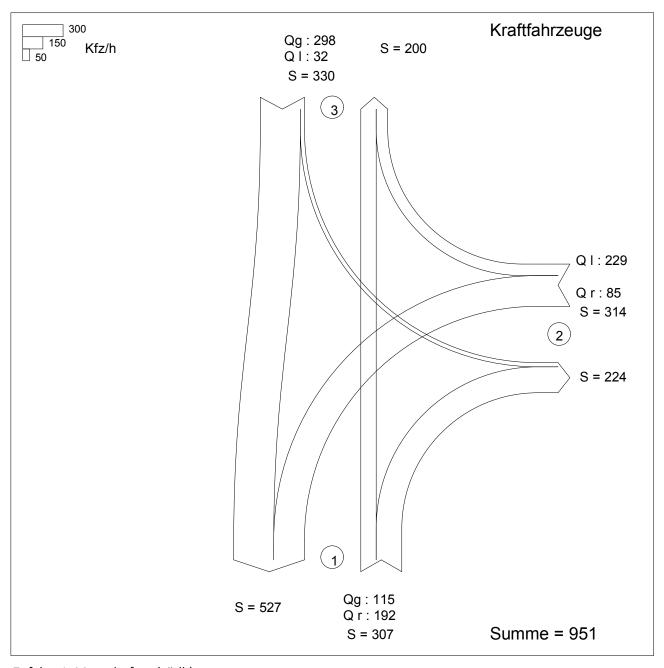
Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (mit Mittelinsel)

Zufahrt	Fußgänger- bzw. Rad- verkehrs- strom	maßgebende Hauptströme (Tabelle S5-9) q _{p,i} [Fz/h]	mittl. Wartezeit (Bild S5-29 mit Sp.41) $t_{w,i}$ [s]	Summe der mittl. Wartezeit Σt _{w,i} [s]	Qualitätsstufe (Tabelle S5-1 mit Sp.43 QSV	
		41	42	43	44	
	F1					
	F2			siehe	oben	
Α	F23					
	R11-1					
	R11-2					
	F23					
	F3			siehe	oben	
В	F4			Sierie		
	F45					
	R2					
	F45					
	F5			siehe	oben	
С	F6					
	R5-1					
	R5-2					
	•	e	rreichbare Qualitäts	stufe QSV Fg/Rad,ges		

KNOBEL Version 7.1.1

IPW INGENIEURPLANUNG

Wallenhorst


Verkehrsfluss-Diagramm in Form einer Einmündung

Projekt : VUS Famila in Lohne

Knotenpunkt: Meyerhofstr. / Falkenbergstr.

Stunde : Sph Prognose Variante 1 (1 Ausfahrt)

Datei : KP 06-PROG-V1_161221.kob

Zufahrt 1: Meyerhofstr. (südl.) Zufahrt 2: Falkenbergstr.

Zufahrt 3: Meyerhofstr. (nördl.)

IPW	INGENIEURPLANUNG	Wallenhorst

HBS 2015, Kapitel S5: Stadtstraßen: Knotenpunkte ohne Lichtsignalanlage

Projekt : VUS Famila in Lohne

Knotenpunkt: Meyerhofstr. / Falkenbergstr.

Stunde : Sph Prognose Variante 1 (1 Ausfahrt)

Datei : KP 06-PROG-V1_161221.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	
2		117				1800					А
3	*	193				1600					А
4	▼	230	6,5	3,2	541	516		12,6	3	4	В
6	₽	85	5,9	3,0	211	927		4,3	1	1	А
Misch-N		315				705	4+6	9,2	3	4	А
8	•	299				1800					А
7	▼	32	5,5	2,8	307	906		4,1	1	1	А
Misch-H		331				1800	7 + 8	2,5	1	2	А

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt :

Lage des Knotenpunkte : Innerorts Alle Einstellungen nach : HBS 2015

Strassennamen:

Hauptstrasse: Meyerhofstr. (südl.)

Meyerhofstr. (nördl.)

Nebenstrasse: Falkenbergstr.

HBS 2015 S5

KNOBEL Version 7.1.3

IPW INGENIEURPLANUNG Wallenhorst

В

Formblatt S5-1a: Beurteilung einer Einmündung nach HBS 2015 (S5)

Knotenpunkt: A-C Meyerhofstr. (südl/B Falkenbergstr.

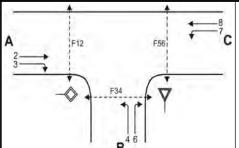
Verkehrsdaten: Datum

_ ✓ Planung [] Analyse Uhrzeit _

Verkehrsregelung: Zufahrt B: \(\forall \sqrt{V} \quad \text{[] stop} \)
Zufahrt D: \(\forall \sqrt{V} \quad \text{[] stop} \)

Zielvorgaben: Mittlere Wartezeit t $_{W} = 20 \text{ s}$ Qualitätsstufe \underline{B}

Geometrische	Randbedingungen


Zufahrt	Verkehrs-		Fahrstreifen		Fußgä	ngerfurt
	strom	Anzahl	Aufstellänge	Dreiecksinsel (RA)	Mittelinsel	FGÜ
		(0/1/2)	n [Pkw-E]	(ja/nein)	(ja/nein)	(ja/nein)
		1	2	3	4a	4b
	2	1				
Α	3	0		nein		
	F12					nein (für ja, siehe Ziffer S5.6)
	B 6 0 F34					
В			2	nein		
					nein	nein (für ja, siehe Ziffer S5.6)
	7	0	0			
С	8	1				
	F56				nein	nein (für ja, siehe Ziffer S5.6)

Bemessungsverkehrsstärken und Verkehrszusammensetzung

	beniessungsverken sstarken und Verken szusanmensetzung								
Zufahrt	Verkehrs- strom	Rad	LV	Lkw+Bus	LkwK	Fz (Sp.5 + Sp.6 + Sp.7 + Sp.8)		Pkw-E / Fz (Gl.(S5-2) oder Gl.(S5-3) oder Gl.(S5-4))	
		q _{Rad,i} [Rad/h]	q Lv,i [Pkw/h]	q _{Lkw+Bus,i} [Lkw/h]	q _{LkwK,i} [LkwK/h]	q _{Fz,i} [Fz/h]	q _{Fg,i} [Fg/h]	f _{PE,i}	q _{PE,i} [Pkw-E/h]
		5	6	7	8	9	10	11	12
	2	0	111	4	0	115		1,017	117
А	3	0	191	1	0	192		1,005	193
	F12						0		
	4	0	227	2	0	229		1,004	230
В	6	0	85	0	0	85		1,000	85
	F34						0		
	7	0	32	0	0	32		1,000	32
С	8	0	297	1	0	298		1,003	299
	F56						0		

Formblatt S5-1b: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Meyerhofstr. (südl/B Falkenbergstr. F12 F56 Verkehrsdaten: Datum Planung [] Analyse Uhrzeit Zufahrt B: Verkehrsregelung: []Zufahrt D: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Zielvorgaben: Kapazität der Verkehrsströme 2 und 8 Verkehrs-Verkehrsstärke Kapazität Auslastungsgrad (Sp.13 / Sp.14) x _i [-] strom (Sp.12) q PE,i [Pkw-E/h] C_{PE,i} [Pkw-E/h] 13 14 15 1800 2 117 0,065 299 8 1800 0,166 Grundkapazität der Verkehrsströme 3, 4, 6 und 7 Verkehrs-Verkehrsstärke Hauptströme Grundkapazität Abminderungsfaktor Fg (Sp.12) q _{PE,i} [Pkw-E/h] (Tabelle S5-2) (Bild S5-2) (Bild S5-3) strom q _{p,i} [Fz/h] G PE,i [Pkw-É/h] f _{f,EK,j} [-] 16 18 19 17 ohne RA mit RA ohne RA mit RA ohne RA mit RA 3 193 0 1600 1,000 7 32 307 906 1,000 (j=F34)ohne RA mit RA 6 85 211 927 1,000 4 230 541 539 1,000 (j=F12)Kapazität der Verkehrsströme 3, 6 und 7 Verkehrs-Kapazität Auslastungsgrad staufreier Zustand (Gl.(S5-7)) (Sp.18*Sp.19) C_{PE,i} [Pkw-E/h] strom (Gl.(S5-8) mit Sp.2, 16 und 20) (Sp.16/Sp.20) x [-] p _{0,i}[-] 21 22 3 0,879 1600 0,121 7 906 0,035 0,958 6 927 0,092 0,908 Kapazität des Verkehrsstroms 4 Auslastungsgrad (Sp.16/Sp.23) Kapazität (Gl.(S5-9))bzw.(Sp.18*Sp.19*Sp.22) C _{PE,4} [Pkw-E/h] Verkehrsstrom X 4[-] 4 516 0,446

Formblatt S5-1c: Beurteilung einer Einmündung nach HBS 2015 (S5)

Knotenpunkt: A-C Meyerhofstr. (südl/B Falkenbergstr.

Verkehrsdaten: Datum

Uhrzeit _____ | Planung [] Analyse

Verkehrsregelung: Zufahrt B:

K 🗸

STOP

Zufahrt D: 🏏 🔽

Zielvorgaben: Mittlere Wartezeit t $_{\text{W}} = \underline{20 \text{ s}}$ Qualitätsstufe $\underline{\text{B}}$

Zufahrt	Verkehrs- strom	Auslastungsgrad (Sp.15, 21, 24)	Aufstellplätze (Sp.2)	Verkehrsstärke (ΣSp.12)	Kapazität (Gl.(S5-10) bzw. (S5-11))	Verkehrszusam- mensetzung (Gl.(S5-5) mit Sp.9 und 11)
		x ¡[-]	n [Pkw-E]	q _{PE,i} [Pkw-E/h]	C _{PE,m} [Pkw-E/h]	
		25	26	27	28	29
В	4	0,446		315	705	1,003
	6	0,092	2	515	7.00	2,000
С	7	0,035	0			
	8	0,166				

Beurteilung der Qualität des Verkehrsablaufs der Fahrzeugströme

Zufahrt	Verkehrs- strom	Verkehrs- zusammen- setzung (Sp.11 u. 29)	Kapazität in Pkw-E/h (Sp.14, 20,	Kapazität in Fz/h (GI.(S5-31))	Kapazitäts- reserve (GI.(S5-32))	mittlere Wartezeit (Bild S5-24)	Qualitätsstufe (Tabelle S5-1 mit Sp.34)		
		f _{PE,i} bzw. f _{PE,m} [-]	23 und 28) C _{PE,i} bzw. C _{PE,m} [Pkw-E/h]	(Sp.31/Sp.30 C _i bzw. C _m [Fz/h]	(Sp.32-Sp.9) R _i bzw. R _m [Fz/h]	t _{w,i} bzw.	QSV		
		30	31	32	33	34	35		
A	2	1,017	1800	1769	1654	2,2	А		
	3	1,005	1600	1592	1400	2,6	А		
В	4	1,004	516	514	285	12,6	В		
Ь	6	1,000	927	927	842	4,3	А		
С	7	1,000	906	906	874	4,1	А		
	8	1,003	1800	1794	1496	2,4	А		
В	4+6	1,003	705	703	389	9,2	А		
С	7+8	1,003	1800	1795	1465	2,5	А		
	erreichbare Qualitätsstufe QSV _{Fz,ges}								

Formblatt S5-1d: Beurteilung einer Einmündung nach HBS 2015 (S5)

A F12 F56 7C

Knotenpunkt: A-C Meyerhofstr. (südl/B Falkenbergstr.

Verkehrsdaten: Datum

Uhrzeit _____ | Planung [] Analyse

Verkehrsregelung: Zufahrt B:

√ □

I (STOP)

Zielvorgaben: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B

Zufahrt D:

Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (ohne Mittelinsel)

Zufahrt	Fußgänger bzw. Rad- verkehrs- strom	maßgebende Hauptströme (Tabelle S5-9) q _{p,i} [Fz/h]	Summe der Hauptströme Σq _{p,i} [Fz/h]	mittl. Wartezeit (Bild S5-29 mit Sp.37) t _{w,i} [s]	Summe der mittl. Wartezeit ∑t _{w,i} [s]	Qualitätsstufe (Tabelle S5-1 mit Sp.39) QSV
		36	37	38	39	40
	F1	298	605			
	F2	307	003		0 (keine Fussg.)	
Α	F23					
	R11-1				0 (kein Radf.)	
	R11-2				0 (Keili Kaul.)	
	F23					
	F3	0	314		0 (keine Fussg.)	
В	F4	314	314		o (keille russg.)	
	F45					
	R2				0 (kein Radf.)	
	F45					
	F5	115	445		0 (keine Fussg.)	
С	F6	330	14 3			
	R5-1				O (koin Badf)	
	R5-2				0 (kein Radf.)	

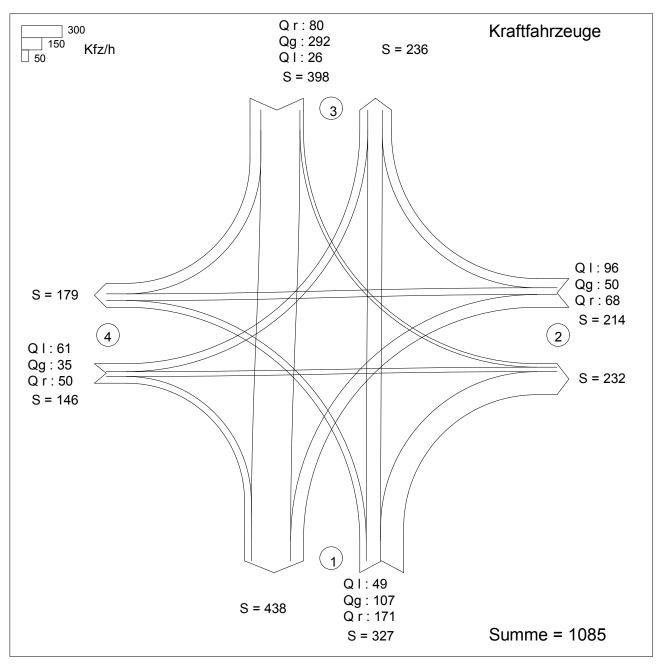
Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (mit Mittelinsel)

Zufahrt	Fußgänger- bzw. Rad- verkehrs- strom	maßgebende Hauptströme (Tabelle S5-9) q _{p,i} [Fz/h]	mittl. Wartezeit (Bild S5-29 mit Sp.41) t _{w,i} [s]	Summe der mittl. Wartezeit Σt _{w,i} [s]	Qualitätsstufe (Tabelle S5-1 mit Sp.43 QSV
		41	42	43	44
	F1				
	F2			siehe	oben
Α	F23				
	R11-1				
	R11-2				
	F23				
	F3			aiaha	ahan
В	F4			siehe	oben
	F45				
	R2				
	F45				
	F5			siehe	oben
С	F6				
	R5-1				
	R5-2				
	·		rreichbare Qualitäts	stufe QSV Fg/Rad,ges	

KNOBEL Version 7.1.3

IPW INGENIEURPLANUNG

Wallenhorst


Verkehrsfluss-Diagramm in Form einer Kreuzung

Projekt : VUS Famila in Lohne

Knotenpunkt: Meyerhofstr. / Falkenbergstr.

Stunde : Sph Prognose Variante 2 (2 Ausfahrten)

Datei : KP 06-PROG-V2_161208.kob

Zufahrt 1: Meyerhofstr. (südl.) Zufahrt 2: Falkenbergstr.

Zufahrt 3: Meyerhofstr. (nördl.)

Zufahrt 4: Famila

|--|

HBS 2015, Kapitel S5: Stadtstraßen: Knotenpunkte ohne Lichtsignalanlage

Projekt : VUS Famila in Lohne

Knotenpunkt: Meyerhofstr. / Falkenbergstr.

Stunde : Sph Prognose Variante 2 (2 Ausfahrten)

Datei : KP 06-PROG-V2_161208.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	
1		49	5,5	2,8	372	842		4,5	1	1	Α
2	→	109				1800					Α
3	_	172				1600					Α
Misch-H		330				1800	1+2+3	2,5	1	2	Α
4	▼	97	6,5	3,2	600	373		13,2	2	2	В
5		50	6,7	3,3	640	399		10,3	1	1	В
6	-	68	5,9	3,0	193	948		4,1	1	1	Α
Misch-N		215				657	4+5+6	8,2	2	3	Α
9		80				1600					Α
8	←	293				1800					Α
7	▼	26	5,5	2,8	278	937		4,0	1	1	Α
Misch-H		399				1800	7 + 8 + 9	2,6	1	2	Α
10	4	61	6,5	3,8	718	280		16,4	1	2	В
11	*	35	6,7	3,8	685	341		11,8	1	1	В
12	₩	50	5,9	3,9	332	641		6,1	1	1	Α
Misch-N		146				482	10+11+12	10,7	2	2	В

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt :

Lage des Knotenpunkte : Innerorts Alle Einstellungen nach : HBS 2015

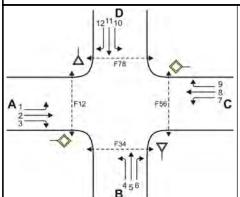
Strassennamen:

Hauptstrasse: Meyerhofstr. (südl.)

Meyerhofstr. (nördl.)

Nebenstrasse: Falkenbergstr.

Famila


HBS 2015 S5

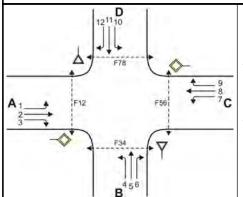
KNOBEL Version 7.1.3

IPW INGENIEURPLANUNG Wallenhorst

В

Formblatt S5-2a: Beurteilung einer Kreuzung nach HBS 2015 (S5)

Knotenpunkt: A-C Meyerhofstr. (sü/B-D Falkenbergstr.


Verkehrsdaten Datum _

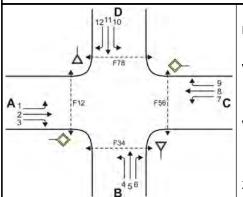
Uhrzeit _____ 🌱 Planung [] Analyse

Zielvorgaben: Mittlere Wartezeit t $_{W} = \underline{20 \text{ s}}$ Qualitätsstufe $\underline{\text{B}}$

			Geometrische	Randbedingunge	n		
Zufahrt	Verkehrs		Fahrstreifer	Fußgä	Fußgängerfurt		
	strom	Anzahl	Aufstellänge	Dreiecksinsel (RA)	Mittelinsel	FGÜ	
		(0/1/2)	n [Pkw-E]	(ja/nein)	(ja/nein)	(ja/nein)	
		1	2	3	4a	4b	
	1	0	0				
А	2	1					
	3	0		nein			
	F12				nein	nein (für ja, siehe Ziffer S5.6)	
	4	0					
5 B		1					
Б	6	0	2	nein			
	F34				nein	nein (für ja, siehe Ziffer S5.6)	
	7	0	0				
С	8	1					
	9	0		nein			
	F56				nein	nein (für ja, siehe Ziffer S5.6)	
	10	0					
D	11	1					
	12	0	1	nein			
	F78				nein	nein (für ja, siehe Ziffer S5.6)	

Formblatt S5-2b: Beurteilung einer Kreuzung nach HBS 2015 (S5)

Knotenpunkt: A-C Meyerhofstr. (südl/B-D Falkenbergstr.


Verkehrsdaten: Datum _

Uhrzeit _____ | Planung [] Analyse

Zielvorgaben: Mittlere Wartezeit t $_{\text{W}}$ = $\underline{20 \text{ s}}$ Qualitätsstufe $\underline{\text{B}}$

	1 1	3 1							
Bemessungsverkehrsstärken und Verkehrszusammensetzung								setzung	
Zufahrt	Verkehrs- strom	Rad	LV	Lkw+Bus	LkwK	Fz (Sp.5 + Sp.6 + Sp.7 + Sp.8)	Fg	Pkw-E / Fz (Gl.(S5-2) oder Gl.(S5-3) oder Gl.(S5-4))	(Sp.9*Sp.11)
		q _{Rad,i} [Rad/h]	[Pkw/h]		q _{LkwK,i} [LkwK/h]	q _{Fz,i} [Fz/h]	q _{Fg,i} [Fg/h]	f _{PE,i} [-]	q _{PE,i} [Pkw-E/h]
		5	6	7	8	9	10	11	12
	1	0	49	0	0	49		1,000	49
А	2	0	103	4	0	107		1,019	109
	3	0	170	1	0	171		1,006	172
	F12						0		
	4	0	94	2	0	96	-	1,010	97
В	5	0	50	0	0	50		1,000	50
	6	0	68	0	0	68		1,000	68
	F34						0		
	7	0	26	0	0	26		1,000	26
С	8	0	291	1	0	292	-	1,003	293
C	9	0	80	0	0	80		1,000	80
	F56						0		
	10	0	61	0	0	61		1,000	61
D	11	0	35	0	0	35		1,000	35
ט	12	0	50	0	0	50		1,000	50
	F78						0		

Formblatt S5-2c: Beurteilung einer Kreuzung nach HBS 2015 (S5)

Knotenpunkt: A-C Meyerhofstr. (südl/B-D Falkenbergstr.

Verkehrsdaten: Datum

Verkehrsregelung: Zufahrt B:

✓

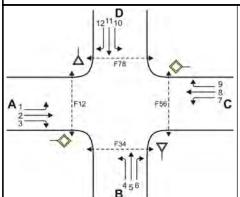
[]

Zufahrt D: []

Zielvorgaben: Mittlere Wartezeit t $_{w} = \underline{20 \text{ s}}$ Qualitätsstufe \underline{B}

Kapazität der Verkehrsströme 2 und 8

Verkehrs- strom	Verkehrsstärke (Sp.12) q _{PE,i} [Pkw-E/h]	Kapazität C _{PE,i} [Pkw-E/h]	Auslastungsgrad (Sp.13 / Sp.14) $\times_{i}[-]$
	13	14	15
2	109	1800	0,061
8	293	1800	0,163


Grundkapazität der Verkehrsströme 1, 3, 4, 5, 6, 7, 9, 10, 11 und 12

	•							
Verkehrs- strom	Verkehrsstärke (Sp.12) q _{PE,i} [Pkw-E/h]	(Tabelle	ströme e S5-4) [Fz/h]	Grundk (Bild S5-9 bzv G PE,i [apazität w. Bild S5-10) Pkw-E/h]	Abminderur (Bild S f _{f,E}	igsfaktor Fg 55-11) _{K,j} [-]	
	16	1	7	1	8	1		
	470	ohne RA	mit RA	ohne RA	mit RA	ohne RA	mit RA	
3	172	0	-	1600	-	1,000		
0	00	ohne RA	mit RA	ohne RA	mit RA	ohne RA	mit RA	
9	80	0	-	1600	-	1,000		
1 (j=F78)	49	37	72	84	12	1,0	000	
7 (j=F34)	26	27	78	93	37	1,0	000	
6	68	1.0	92	94	10	ohne RA	mit RA	
0	00	13	92	92	+0	1,000		
12	FO	23	วา	64	11	ohne RA	mit RA	
12	50	3.	32	0-	+1	1,000		
5	50	63	39	44	15			
11	35	68	35	38	30			
4	0.7		20	40	77	1.0	100	
(j=F12)	97	55	99	49	97	1,0	100	
10	61	71	17	37	70	1.0	100	
(j=F56)	01	/]	L /	3,	7 3	1,0	100	

Formblatt S5-2d: Beurteilung einer Kreuzung nach HBS 2015 (S5) 12¹¹10 A-C Meyerhofstr. (südl/B-D Falkenbergstr. Knotenpunkt: Verkehrsdaten: Datum Planung [] Analyse Uhrzeit Zufahrt B: Verkehrsregelung: [] Zufahrt D: B456 Mittlere Wartezeit t $_{w}$ = 20 s Qualitätsstufe B Zielvorgaben: Kapazität der Verkehrsströme 1, 3, 6, 7, 9, und 12 staufreier Zustand (GI.(S5-14), (S5-15) bzw. (S5-18) mit Sp.2, 16 und 20) Verkehrs-Kapazität Auslastungsgrad staufreier Zustand strom (Gl.(S5-13)) (Gl.(S5-17) (Šp.18*Sp.19) C _{PE,i} [Pkw-E/h] (Sp.16/Sp.20) mit Sp.22) x [-] p x [-] p _{0,i}[-] 23 20 21 1600 0,893 3 0,108 9 1600 0,050 0,950 842 0,058 0,930 1 0,897 7 937 0,028 0,965 6 948 0,072 0,928 ---12 641 0,078 0,922 ---Kapazität der Verkehrsströme 5 und 11 Kapazität (Gl.(S5-16)) (Sp.18*Sp.23) Verkehrs-Auslastungsgrad staufreier Zustand staufreier Zustand (Gl.(S5-19)bzw.(S5-20) (Gl.(S5-18) mit strom mit Sp.23 und 26) (Sp.16/Sp.24) Sp.16 und 24) C _{PE,i} [Pkw-E/h] x ¡[-] 25 p _z [-] p _{0,i}[-] 24 26 5 399 0,125 0,875 0,795 11 341 0,103 0,897 0,814 Kapazität der Verkehrsströme 4 und 10 Verkehrs-Kapazität Auslastungsgrad (Sp.16/Sp.28) x _i[-] strom (Gl.(S5-21))bzw.(Sp.18*Sp.19*Sp.22*Sp.27) C PE,i [Pkw-E/h] 29 28 373 4 0,260 280 10 0,218

Formblatt S5-2e: Beurteilung einer Kreuzung nach HBS 2015 (S5) Knotenpunkt: A-C Meyerhofstr. (südl/B-D Falkenbergstr. Verkehrsregelung: Zufahrt B: Verkehrsdaten: Datum [] Planung [] Analyse Zufahrt D: Uhrzeit [] Kapazität der Mischströme Auslastungsgrad (Sp.15, 21, 25, 29) Aufstellplätze Verkehrsstärke Zufahrt Verkehrs-Kapazität Verkehrszusam-(Gl.(S5-22) bis (S5-25)) strom (Sp.2) $(\Sigma Sp.12)$ mensetzung (Gl.(S5-5)) C_{PE,m} [Pkw-E/h] q _{PE,i} [Pkw-E/h] n [Pkw-E] x [-] f _{PE,m} [-] 33 30 32 34 31 0,058 0 1 Α 2 0,061 ---3 0,108 ---4 0,260 5 В 0,125 215 657 1,005 2 6 0,072 7 0,028 n C 8 0,163 9 0,050 ---0,218 10 0,103 482 1,000 D 11 146 12 0,078 1 Beurteilung der Qualität des Verkehrsablaufs der Fahrzeugströme Kapazität Kapazitäts-Oualitätsstufe 7ufahrt Verkehrs-Verkehrsmittlere Kanazität in Pkw-E/h (Sp.14, 20, 23, 28 und 32) in Fz/h (Gl.(S5-31)) (Sp.36/Sp.35 reserve (Gl.(S5-32)) (Sp.37-Sp.9) (Tabelle S5-1 Wartezeit zusammenstrom mit Sp.39) setzung (Sp.11 u. 34) (Bild S5-24) C _{PE,i} bzw. C _{PE,m} [Pkw-E/h] t _{w,i} bzw. QSV R i bzw. f PE,i bzw. C_ibzw. f PE,m [-] C_m [Fz/h] R_{m} [Fz/h] $t_{w,m}$ [s] 35 39 40 1 1,000 842 842 793 4,5 Α Α 2 1,019 1800 1767 1660 2,2 Α 3 1,006 1600 1591 1420 2,5 Α 4 В 1,010 373 369 273 13.2 5 В 1,000 399 399 349 10,3 В 1,000 948 948 880 4,1 Α 6 7 1,000 937 937 911 4,0 Α 1794 С 8 1502 Α 1,003 1800 2,4 9 1,000 1600 1600 1520 2,4 Α 10 1,000 280 280 219 16,4 В В D 11 1,000 341 341 306 11,8 591 Α 12 1,000 641 641 6,1 1+2+3 1,009 1784 1457 2,5 1800 Α В 4+5+6 1,005 657 654 440 8,2 Α C 1795 7 + 8 + 91,003 1800 1397 2,6 Α D 10+11+12 1,000 482 482 336 10,7 В erreichbare Qualitätsstufe QSV Fz,ges В

Formblatt S5-2f: Beurteilung einer Kreuzung nach HBS 2015 (S5)

Knotenpunkt: A-C Meyerhofstr. (südl/B-D Falkenbergstr.

Verkehrsdaten: Datum

Uhrzeit ______ Planung [] Analyse

Verkehrsregelung: Zufahrt B:

Zufahrt D: []

Zielvorgaben: Mittlere Wartezeit t $_{\rm W}$ = 20 s Qualitätsstufe B

Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (ohne Mittelinsel)

Zufahrt	Fußgänger bzw. Rad- verkehrs- strom	maßgebende Hauptströme (Tabelle S5-9) q _{p,i} [Fz/h]	Summe der Hauptströme Σq _{p,i} [Fz/h]	mittl. Wartezeit (Bild S5-29 mit Sp.42) t _{w,i} [s]	Summe der mittl. Wartezeit ∑t _{w,i} [s]	Qualitätsstufe (Tabelle S5-1 mit Sp.44) QSV
		41	42	43	44	45
	F81					
	F1	292	619		0 (keine Fussg.)	
A	F2	327	013		o (keine russg.)	
	F23					
	R11-1				0 (kein Radf.)	
	R11-2				o (Keiii Kaai.)	
	F23					
	F3	35	249		0 (keine Fussg.)	
В	F4	214	213		o (Keine russg.)	
	F45					
	R2				0 (kein Radf.)	
	F45					
	F5	107	505		0 (keine Fussg.)	
С	F6	398	303		o (keine russg.)	
	F67					
	R5-1				0 (kein Radf.)	
	R5-2				o (Keiii Kaai.)	
	F67					
	F7	50	196		0 (keine Fussg.)	
D	F8	146	150		o (keille i ussg.)	
	F81					
	R8				0 (kein Radf.)	

Anlage 5.6 Formblatt S5-2g: Beurteilung einer Kreuzung nach HBS 2015 (S5) Knotenpunkt: A-C Meyerhofstr. (südl/B-D Falkenbergstr. Verkehrsdaten: Datum Planung [] Analyse Uhrzeit Verkehrsregelung: Zufahrt B: Zufahrt D: [] Zielvorgaben: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (mit Mittelinsel) mittl. Wartezeit (Bild S5-29 Zufahrt Fußgängermaßgebende Summe der Qualitätsstufe mittl. Wartezeit bzw. Rad-Hauptströme (Tabelle S5-1 verkehrs-(Tabelle S5-9) mit Sp.46) mit Sp.48 q _{p,i} [Fz/h] t _{w,i} [s] QSV strom $\sum t_{w,i}[s]$ 49 48 46 F81 F1 siehe Formblatt S5-2f F2 Α F23 R11-1 R11-2 F23 F3 Formblatt S5-2f siehe В F4 F45 R2 F45

F5

F6

F67 R5-1 R5-2 F67 F7

F8 F81 R8

С

D

KNOBEL Version 7.1.3

Formblatt S5-2f

Formblatt S5-2f

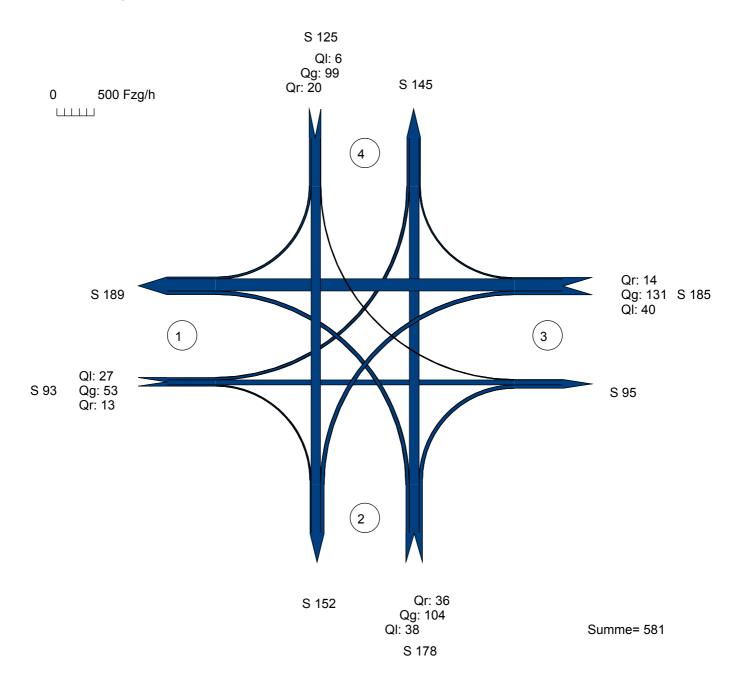
siehe

siehe

erreichbare Qualitätsstufe QSV Fg/Rad,ges

Verkehrsfluss-Diagramm

Datei : ANLAYS~2.AMP

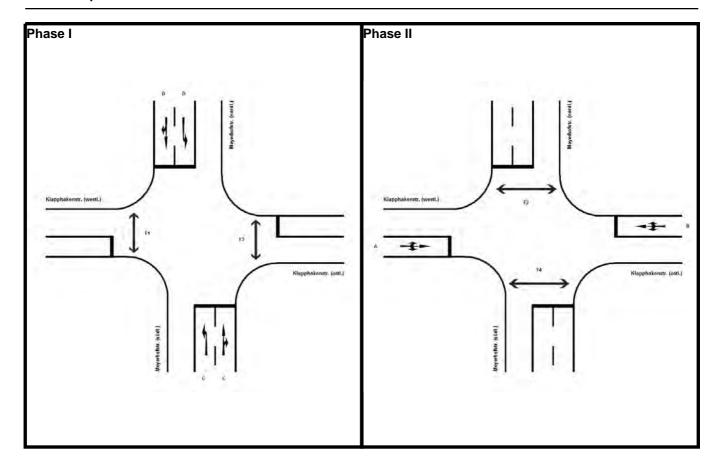

Projekt: VUS Famila in Lohne (216213)

Knoten: KP 07 Meyerhofstr./Klapphakenstr., Analyse

Stunde: Spitzenstunde

Fahrzeuge

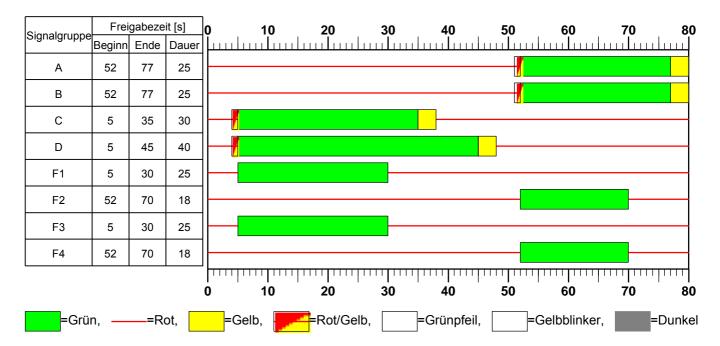
Zufahrt 1 : Klapphakenstr. (westl.) Zufahrt 2 : Meyerhofstr. (südl.) Zufahrt 3 : Klapphakenstr. (östl.) Zufahrt 4 : Meyerhofstr. (nördl.)


Übersicht Phaseneinteilung

Datei : ANLAYS~2.AMP

Projekt : VUS Famila in Lohne (216213) Knoten : KP 07 Meyerhofstr./Klapphakenstr., Analyse

Stunde: Spitzenstunde


Datei : ANLAYS~2.AMP

Projekt: VUS Famila in Lohne (216213)

Knoten: KP 07 Meyerhofstr./Klapphakenstr., Analyse

Stunde: Spitzenstunde

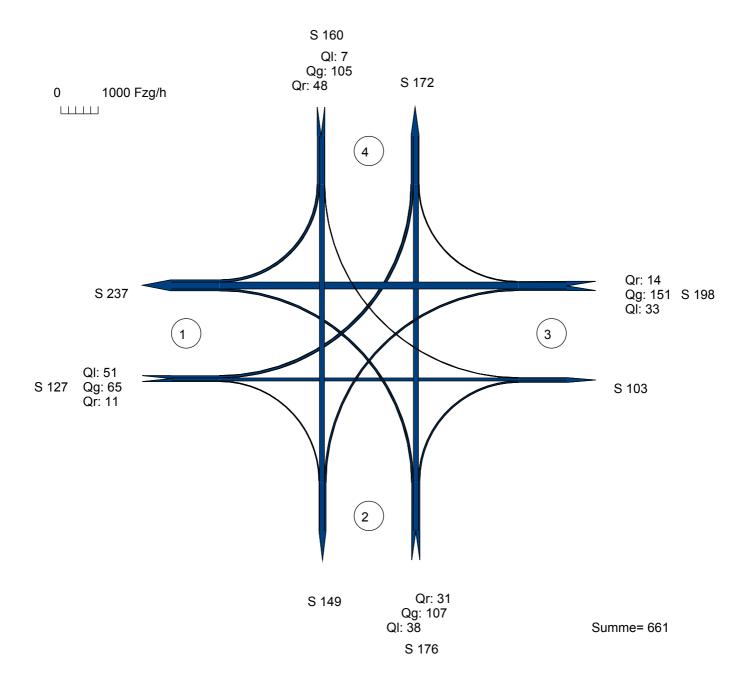
					Knotenpunkt	mit Lichtsign	nalanlage			
Formi	blatt 1				-	usgangsdate				
	Projekt:	VUS Famila	in Lohne (21	16213)			Stadt			
 	Knotenpunkt:				Analyse		Datum	08.09.2016		
	Zeitabschnitt:				-		Bearbeiter	kül		
Umlaufzeit	t _U : 80 [s]									
Kfz-Verkel	hrsströme									
Nin	q_{LV}	q _{Lkw+Bus}	q_{LkwK}	q_{Kfz}	q_{SV}	f_{SV}		Anzahl	Misch-	bedingt
Nr.	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[-]		Fahrstreifen	fahrstreifen	verträglich
1	27	0	0			1,000		1	ja	ja
2	52	0	1			1,028		1	ja	nein
3	13	0	0			1,000		1	ja	ja
4	37	0	1			1,039		1	nein	ja
5	101	0	3			1,043		1	ja	nein
6	36	0	0			1,000		1	ja	ja
7	40	0	0			1,000		1	ja	ja
8	131	0	0			1,000		1	ja	nein
9	14	0	0			1,000		1	ja	ja
10	5	0	1			1,250		1	nein	ja
11	93	0	6			1,091		1	ja	nein
12	19	0	1			1,075		1	ja	ja
Kfz-Fahrst	reifen							Г		
Zufahrt	Fahrt-	Nr.	L	b	f _b	R	f_R	s	f _s	L _{LA} /L _{RA}
Zulariit	richtung	141.	[m]	[m]	[-]	[m]	[-]	[%]	[-]	[m]
1	rechts	11		>= 3,00	1,000	12,00	1,120	0,0	1,000	15
1	gerade	11		>= 3,00	1,000	-	1,000	0,0	1,000	
1	links	11		>= 3,00	1,000	15,00	1,075	0,0	1,000	20
2	rechts	21		>= 3,00	1,000	15,00	1,075	0,0	1,000	23
2	gerade	21		>= 3,00	1,000	-	1,000	0,0	1,000	
2	links	22		>= 3,00	1,000	15,00	1,075	0,0	1,000	14
3	rechts	31		>= 3,00	1,000	12,00	1,120	0,0	1,000	10
3	gerade	31		>= 3,00	1,000	-	1,000	0,0	1,000	
3	links	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	16
4	rechts	41		>= 3,00	1,000	12,00	1,120	0,0	1,000	20
4	gerade	41		>= 3,00	1,000	-	1,000	0,0	1,000	
4	links	42		>= 3,00	1,000	20,00	1,000	0,0	1,000	14
Fußgänge	r-/Radfahrer	furten								
	Bez.	q_{Fg}	q_Rad	t_{vor}	1. Furt	2. Furt	3. Furt	4. Furt		
Zufahrt	Signalgr.	[Fg/h]	[Rad/h]	[s]	Länge	Länge	Länge	Länge		
					[m]	[m]	[m]	[m]		
1	F1	100	0		6,80					
2	F4	100	0		9,80					
3	F3	100	0		7,00					
4	F2	100	0		11,10					

Formblatt 2						kt mit Lichtsi	mit Lichtsignalanlage				
				Berechn	ung der Grur	ndlagendaten	für den Kfz-	-Verkehr			
	-	VUS Famila						Stadt			
	Knotenpunkt	-		phakenstr., A	Analyse				: 08.09.2016		
	Zeitabschnitt	•						Bearbeiter	: kül		
Kfz-Verke	hrsströme -	Kapazitäten	(strombezo	gen)		1					
Nr.	Bez.	$t_{B,i}$	$q_{S,i}$	$t_{F,i}$	$C_{0,i}$	$C_{D,i}$	$C_{PW,i}$	$C_{GF,i}$	$C_{LA,i}$	$C_{RA,i}$	
	SG	[s]	[Kfz/h]	[s]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	
1	Α	1,935	1860	25	605	237	150		387		
2	Α	1,851	1945	25	632						
3	Α	2,016	1786	25	580					46	
4	С	2,011	1790	30	694	306	101		407		
5	С	1,878	1917	30	743						
6	С	1,935	1860	30	721					60	
7	В	1,800	2000	25	650	279	120		399		
8	В	1,800	2000	25	650						
9	В	2,016	1786	25	580					46	
10	D	2,250	1600	40	820	325	84		409		
11	D	1,964	1833	40	939						
12	D	2,167	1661	40	851					744	
Kfz-Verke	hrsströme -										
Kfz-Verke Nr.	ehrsströme - q _j [Kfz/h]	Kapazitäten q _G [Kfz/h]	(fahrstreife q _{RA} [Kfz/h]	nbezogen) q _{LA} [Kfz/h]	n _k [Kfz]	N _{MS,90,j} [Kfz/h]	C _{K,j} [Kfz/h]	C _{M,j} [Kfz/h]	C _j [Kfz/h]		
	q _j	q_G	q _{RA}	q _{LA}				-			
Nr.	q _j [Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]	q _{LA} [Kfz/h]		[Kfz/h]		[Kfz/h]			
Nr. 11	q _j [Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]	q _{LA} [Kfz/h]		[Kfz/h] 3,924		[Kfz/h] 512			
Nr. 11 21	q _j [Kfz/h] 93 140	q _G [Kfz/h]	q _{RA} [Kfz/h]	q _{LA} [Kfz/h]		[Kfz/h] 3,924 4,808		[Kfz/h] 512	[Kfz/h]		
Nr. 11 21 22	q _j [Kfz/h] 93 140 38	q _G [Kfz/h] 53 104	q _{RA} [Kfz/h] 13	q _{LA} [Kfz/h] 27		[Kfz/h] 3,924 4,808 2,163		[Kfz/h] 512 700	[Kfz/h]		
Nr. 11 21 22 31	q _j [Kfz/h] 93 140 38 185	q _G [Kfz/h] 53 104	q _{RA} [Kfz/h] 13 36	q _{LA} [Kfz/h] 27		[Kfz/h] 3,924 4,808 2,163 6,732		[Kfz/h] 512 700 557	[Kfz/h]		
Nr. 11 21 22 31 41	q _j [Kfz/h] 93 140 38 185 119	q _G [Kfz/h] 53 104	q _{RA} [Kfz/h] 13 36	q _{LA} [Kfz/h] 27 38 40		[Kfz/h] 3,924 4,808 2,163 6,732 3,578		[Kfz/h] 512 700 557	[Kfz/h] 407		
Nr. 11 21 22 31 41	q _j [Kfz/h] 93 140 38 185 119	q _G [Kfz/h] 53 104	q _{RA} [Kfz/h] 13 36	q _{LA} [Kfz/h] 27 38 40		[Kfz/h] 3,924 4,808 2,163 6,732 3,578		[Kfz/h] 512 700 557	[Kfz/h] 407		
Nr. 11 21 22 31 41	q _j [Kfz/h] 93 140 38 185 119	q _G [Kfz/h] 53 104	q _{RA} [Kfz/h] 13 36	q _{LA} [Kfz/h] 27 38 40		[Kfz/h] 3,924 4,808 2,163 6,732 3,578		[Kfz/h] 512 700 557	[Kfz/h] 407		
Nr. 11 21 22 31 41	q _j [Kfz/h] 93 140 38 185 119	q _G [Kfz/h] 53 104	q _{RA} [Kfz/h] 13 36	q _{LA} [Kfz/h] 27 38 40		[Kfz/h] 3,924 4,808 2,163 6,732 3,578		[Kfz/h] 512 700 557	[Kfz/h] 407		
Nr. 11 21 22 31 41	q _j [Kfz/h] 93 140 38 185 119	q _G [Kfz/h] 53 104	q _{RA} [Kfz/h] 13 36	q _{LA} [Kfz/h] 27 38 40		[Kfz/h] 3,924 4,808 2,163 6,732 3,578		[Kfz/h] 512 700 557	[Kfz/h] 407		
Nr. 11 21 22 31 41	q _j [Kfz/h] 93 140 38 185 119	q _G [Kfz/h] 53 104	q _{RA} [Kfz/h] 13 36	q _{LA} [Kfz/h] 27 38 40		[Kfz/h] 3,924 4,808 2,163 6,732 3,578		[Kfz/h] 512 700 557	[Kfz/h] 407		
Nr. 11 21 22 31 41	q _j [Kfz/h] 93 140 38 185 119	q _G [Kfz/h] 53 104	q _{RA} [Kfz/h] 13 36	q _{LA} [Kfz/h] 27 38 40		[Kfz/h] 3,924 4,808 2,163 6,732 3,578		[Kfz/h] 512 700 557	[Kfz/h] 407		
Nr. 11 21 22 31 41	q _j [Kfz/h] 93 140 38 185 119	q _G [Kfz/h] 53 104	q _{RA} [Kfz/h] 13 36	q _{LA} [Kfz/h] 27 38 40		[Kfz/h] 3,924 4,808 2,163 6,732 3,578		[Kfz/h] 512 700 557	[Kfz/h] 407		
Nr. 11 21 22 31 41	q _j [Kfz/h] 93 140 38 185 119	q _G [Kfz/h] 53 104	q _{RA} [Kfz/h] 13 36	q _{LA} [Kfz/h] 27 38 40		[Kfz/h] 3,924 4,808 2,163 6,732 3,578		[Kfz/h] 512 700 557	[Kfz/h] 407		
Nr. 11 21 22 31 41	q _j [Kfz/h] 93 140 38 185 119	q _G [Kfz/h] 53 104	q _{RA} [Kfz/h] 13 36	q _{LA} [Kfz/h] 27 38 40		[Kfz/h] 3,924 4,808 2,163 6,732 3,578		[Kfz/h] 512 700 557	[Kfz/h] 407		

	-1-44 0	Knotenpunkt mit Lichtsignalanlage										
Form	olatt 3				Berechnung	der Verkehrs	squalitäten					
	Projekt	: VUS Famila	in Lohne (21	16213)				Stadt	:			
k	-	: KP 07 Meye			Analyse			Datum	: 08.09.2016			
Z	Zeitabschnitt	: Spitzenstun	de					Bearbeiter	: kül			
Kfz-Verkel	nrsströme -	Verkehrsqu	alitäten (fah	rstreifenbez	ogen)							
	Bez.	Ströme	q _j	x _j	f _{A,j}	N _{GE,j}	N _{MS,j}	L _{95,j}	t _{W,j}	QSV		
Nr.	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]		
11	А	1, 2, 3	93	0,182	0,27	0,125	1,711	24	23,3	B		
21	С	5, 6	140	0,200	0,37	0,141	2,263	30	18,0	Α		
22	С	4	38	0,093	0,23	0,057	0,724	13	24,9	В		
31	В	7, 8, 9	185	0,332	0,28	0,287	3,547	40	24,7	В		
41	D	11, 12	119	0,132	0,50	0,085	1,504	23	11,1	A		
42	D	10	6	0,015	0,26	0,008	0,108	5	22,3	В		
72	D	10	0	0,013	0,20	0,000	0,100		22,3			
Gesamt			581						20.0			
Gesamt			581						20,0			
	(D. 16.1		581						20,0			
	r- /Radfahre								20,0			
	Bez.	q _{Fg}	q _{Rad}	Anzahl	t _{W,max}				20,0	QSV		
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	[s]				20,0	[-]		
Fußgänger Zufahrt 1	Bez.	q _{Fg}	q _{Rad}		II.				20,0			
Fußgänger Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Furten	[s]				20,0	[-]		
Fußgänger Zufahrt 1	Bez. SG F1	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Furten 1	[s] 55				20,0	[-] C		
Fußgänger Zufahrt 1 2	Bez. SG F1 F4	q _{Fg} [Fg/h] 100	q _{Rad} [Rad/h] 0	Furten 1	[s] 55 62				20,0	[-] C D		
Fußgänger Zufahrt 1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	q _{Rad} [Rad/h] 0 0	Furten 1 1 1	[s] 55 62 55				20,0	[-] C D		
Fußgänger Zufahrt 1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	q _{Rad} [Rad/h] 0 0	Furten 1 1 1	[s] 55 62 55				20,0	[-] C D		
Fußgänger Zufahrt 1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	q _{Rad} [Rad/h] 0 0	Furten 1 1 1	[s] 55 62 55				20,0	[-] C D		
Fußgänger Zufahrt 1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	q _{Rad} [Rad/h] 0 0	Furten 1 1 1	[s] 55 62 55				20,0	[-] C D		
Fußgänger Zufahrt 1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	q _{Rad} [Rad/h] 0 0	Furten 1 1 1	[s] 55 62 55				20,0	[-] C D		
Fußgänger Zufahrt 1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	q _{Rad} [Rad/h] 0 0	Furten 1 1 1	[s] 55 62 55				20,0	[-] C D		
Fußgänger Zufahrt 1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	q _{Rad} [Rad/h] 0 0	Furten 1 1 1	[s] 55 62 55				20,0	[-] C D		
Fußgänger Zufahrt 1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	q _{Rad} [Rad/h] 0 0	Furten 1 1 1	[s] 55 62 55				20,0	[-] C D		
Fußgänger Zufahrt 1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	q _{Rad} [Rad/h] 0 0	Furten 1 1 1	[s] 55 62 55				20,0	[-] C D		
Fußgänger Zufahrt 1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	q _{Rad} [Rad/h] 0 0	Furten 1 1 1	[s] 55 62 55				20,0	[-] C D		
Fußgänger Zufahrt 1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	q _{Rad} [Rad/h] 0 0	Furten 1 1 1	[s] 55 62 55				20,0	[-] C D		
Fußgänger Zufahrt 1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	q _{Rad} [Rad/h] 0 0	Furten 1 1 1	[s] 55 62 55				20,0	[-] C D		
Fußgänger Zufahrt 1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	q _{Rad} [Rad/h] 0 0	Furten 1 1 1	[s] 55 62 55				20,0	[-] C D		
Fußgänger Zufahrt 1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	q _{Rad} [Rad/h] 0 0	Furten 1 1 1	[s] 55 62 55				20,0	[-] C D		
Fußgänger Zufahrt 1 2 3	Bez. SG F1 F4 F3	q _{Fg} [Fg/h] 100 100	q _{Rad} [Rad/h] 0 0	Furten 1 1 1	[s] 55 62 55				20,0	[-] C D		

Verkehrsfluss-Diagramm

Datei : PRFF76~1.AMP


Projekt: VUS Famila in Lohne (216213)

Knoten: KP 07 Meyerhofstr./Klapphakenstr., Prognose Variante 1 (1 Ausfahrt)

Stunde: Spitzenstunde

Fahrzeuge

Zufahrt 1 : Klapphakenstr. (westl.) Zufahrt 2 : Meyerhofstr. (südl.) Zufahrt 3 : Klapphakenstr. (östl.) Zufahrt 4 : Meyerhofstr. (nördl.)

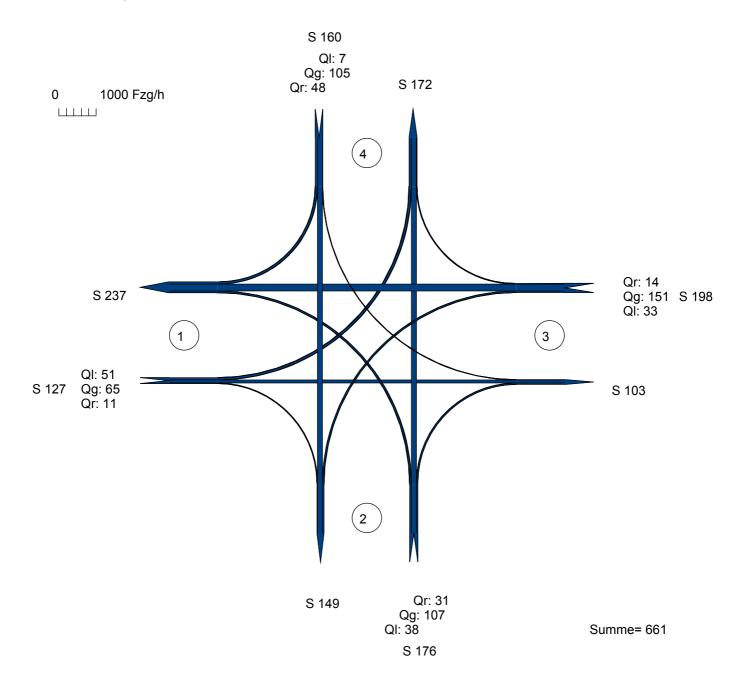
	I		Knotenpunkt mit Lichtsignalanlage								
Form	blatt 1				-	usgangsdate					
	Projekt:	VUS Famila	in Lohne (21	16213)		<u> </u>	Stadt				
ŀ	Knotenpunkt:				Prognose Va	<u>riante 1 (1 A</u> ı	usfah D atum:	21.12.2016			
Ž	Zeitabschnitt:	Spitzenstun	de				Bearbeiter	kül			
Umlaufzeit	t _U : 80 [s]										
Kfz-Verkel	hrsströme										
Nr.	q_{LV}	q _{Lkw+Bus}	q_{LkwK}	q_{Kfz}	q_{SV}	f_{SV}		Anzahl	Misch-	bedingt	
141.	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[-]		Fahrstreifen	fahrstreifen	verträglich	
1	51	0	0			1,000		1	ja	ja	
2	64	0	1			1,023		1	ja	nein	
3	11	0	0			1,000		1	ja	ja	
4	37	0	1			1,039		1	nein	ja	
5	104	0	3			1,042		1	ja	nein	
6	31	0	0			1,000		1	ja	ja	
7	33	0	0			1,000		1	ja	ja	
8	151	0	0			1,000		1	ja	nein	
9	14	0	0			1,000		1	ja	ja	
10	6	0	1			1,214		1	nein	ja	
11	99	0	6			1,086		1	ja	nein	
12	47	0	1			1,031		1	ja	ja	
Kfz-Fahrst			. 1								
Zufahrt	Fahrt-	Nr.	L	b	f _b	R	f _R	S	f _s	L _{LA} /L _{RA}	
	richtung	4.4	[m]	[m]	[-]	[m]	[-]	[%]	[-]	[m]	
1	rechts	11		>= 3,00	1,000	12,00	1,120	0,0	1,000	15	
1	gerade links	11 11		>= 3,00 >= 3,00	1,000	15,00	1,000	0,0	1,000	20	
2	rechts	21		>= 3,00	1,000 1,000	15,00	1,075 1,075	0,0	1,000 1,000	23	
2	gerade	21		>= 3,00	1,000	15,00	1,075	0,0	1,000	23	
2	links	22		>= 3,00	1,000	15,00	1,000	0,0	1,000	14	
3	rechts	31		>= 3,00	1,000	12,00	1,120	0,0	1,000	10	
3	gerade	31		>= 3,00	1,000	-	1,000	0,0	1,000	10	
3	links	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	16	
4	rechts	41		>= 3,00	1,000	12,00	1,120	0,0	1,000	20	
4	gerade	41		>= 3,00	1,000	-	1,000	0,0	1,000		
4	links	42		>= 3,00	1,000	20,00	1,000	0,0	1,000	14	
	r-/Radfahrer			,				, , , , ,			
	Bez.	q _{Fg}	q _{Rad}	t _{vor}	1. Furt	2. Furt	3. Furt	4. Furt			
Zufahrt	Signalgr.	[Fg/h]	[Rad/h]	[s]	Länge	Länge	Länge	Länge			
					[m]	[m]	[m]	[m]			
1	F1	100	0		6,80	-	-	_			
2	F4	100	0		9,80						
3	F3	100	0		7,00						
4	F2	100	0		11,10						

Eorn	nblatt 2				Knotenpun	kt mit Lichtsi	gnalanlage			
FOIII	IDIALL Z			Berechn	ung der Grui	ndlagendater	für den Kfz-	-Verkehr		
		VUS Famila						Stadt		
	Knotenpunkt			phakenstr., F	Prognose Va	<u>riante 1 (1 Αι</u>	usfahrt)	-	21.12.2016	
	Zeitabschnitt	•						Bearbeiter	: kül	
Kfz-Verke	ehrsströme -	Kapazitäten	(strombezo	gen)						
Nr.	Bez.	t _{B,i}	$q_{S,i}$	$t_{F,i}$	$C_{0,i}$	$C_{D,i}$	$C_{PW,i}$	$C_{GF,i}$	$C_{LA,i}$	$C_{\text{RA},i}$
	SG	[s]	[Kfz/h]	[s]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]
1	A	1,935	1860	25	605	222	150		372	
2	Α	1,842	1954	25	635					
3	Α	2,016	1786	25	580					46
4	С	2,011	1790	30	694	286	101		387	
5	С	1,876	1919	30	744					
6	С	1,935	1860	30	721					60
7	В	1,800	2000	25	650	276	120		396	
8	В	1,800	2000	25	650					
9	В	2,016	1786	25	580					465
10	D	2,186	1647	40	844	331	86		417	
11	D	1,954	1842	40	944					
12	D	2,079	1732	40	887					776
		,								
Kfz-Verke	ehrsströme -	Kapazitäten	(fahrstreife	nbezogen)						
Nr.	q _j [Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]	q _{LA} [Kfz/h]	n _k [Kfz]	N _{MS,90,j} [Kfz/h]	C _{K,j} [Kfz/h]	C _{M,j} [Kfz/h]	C _j [Kfz/h]	
11	127	65	11	51		5,111		483		
21	138	107	31			4,737		706		
22	38			38		2,188			387	
31	198	151	14	33		7,070		573		
41	153	105	48			4,414		884		
42	7			7		0,727			417	
				ļ ,						

Formi	olatt 3					t mit Lichtsig				
					Berechnung	der Verkehr	squalitäten			
	-	: VUS Famila						Stadt:		
		: KP 07 Meye		<u>phakenstr., F</u>	Prognose Var	iante 1 (1 Au	ısfahrt)		21.12.2016	
		: Spitzenstun						Bearbeiter:	kül	
Kfz-Verkel	rsströme -	Verkehrsqua	alitäten (fah	rstreifenbez	ogen)					
Nr.	Bez.	Ströme	q_j	$\mathbf{x}_{\mathbf{j}}$	$f_{A,j}$	$N_{GE,j}$	$N_{MS,j}$	L _{95,j}	$t_{W,j}$	QSV
	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	Α	1, 2, 3	127	0,263	0,25	0,203	2,459	31	25,4	В
21	С	5, 6	138	0,195	0,37	0,137	2,218	29	17,8	Α
22	С	4	38	0,098	0,22	0,061	0,737	14	25,7	В
31	В	7, 8, 9	198	0,346	0,29	0,306	3,781	42	24,4	В
41	D	11, 12	153	0,173	0,49	0,118	2,014	28	11,9	Α
42		10	7	0,017	0,25	0,009	0,126	5	22,5	В
72		10	,	0,017	0,20	0,000	0,120	J	22,5	
Gesamt			661						20,4	
Fußgänge	r- /Radfahre	erfurten								
	Bez.	q _{Fg}	q _{Rad}	Anzahl	t _{W,max}					QSV
Zufahrt	SG	[Fg/h]	[Rad/h]	Furten	[s]					[-]
1	F1	100	0	1	55					С
2	F4	100	0	1	62					D
3	F3	100	0	1	55					С
4	F2	100	0	1	62					D
		100	0	·	02					
								Gesamt	bewertung:	

Verkehrsfluss-Diagramm

Datei : PRFF76~1.AMP


Projekt: VUS Famila in Lohne (216213)

Knoten: KP 07 Meyerhofstr./Klapphakenstr., Prognose Variante 1 (1 Ausfahrt)

Stunde: Spitzenstunde

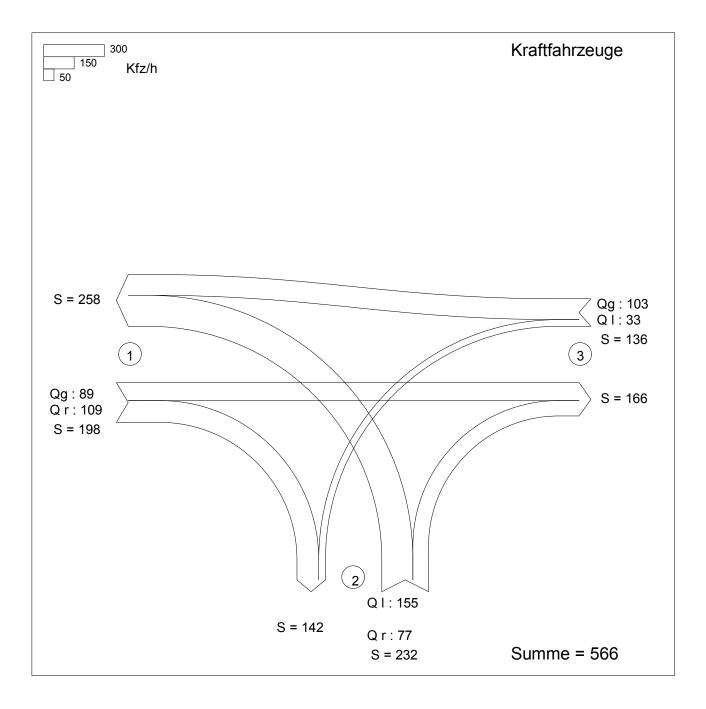
Fahrzeuge

Zufahrt 1 : Klapphakenstr. (westl.) Zufahrt 2 : Meyerhofstr. (südl.) Zufahrt 3 : Klapphakenstr. (östl.) Zufahrt 4 : Meyerhofstr. (nördl.)

	I		Knotenpunkt mit Lichtsignalanlage								
Form	blatt 1				-	usgangsdate					
	Projekt:	VUS Famila	in Lohne (21	16213)		<u> </u>	Stadt				
ŀ	Knotenpunkt:				Prognose Va	<u>riante 1 (1 A</u> ı	usfah D atum:	21.12.2016			
Ž	Zeitabschnitt:	Spitzenstun	de				Bearbeiter	kül			
Umlaufzeit	t _U : 80 [s]										
Kfz-Verkel	hrsströme										
Nr.	q_{LV}	q _{Lkw+Bus}	q_{LkwK}	q_{Kfz}	q_{SV}	f_{SV}		Anzahl	Misch-	bedingt	
141.	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[-]		Fahrstreifen	fahrstreifen	verträglich	
1	51	0	0			1,000		1	ja	ja	
2	64	0	1			1,023		1	ja	nein	
3	11	0	0			1,000		1	ja	ja	
4	37	0	1			1,039		1	nein	ja	
5	104	0	3			1,042		1	ja	nein	
6	31	0	0			1,000		1	ja	ja	
7	33	0	0			1,000		1	ja	ja	
8	151	0	0			1,000		1	ja	nein	
9	14	0	0			1,000		1	ja	ja	
10	6	0	1			1,214		1	nein	ja	
11	99	0	6			1,086		1	ja	nein	
12	47	0	1			1,031		1	ja	ja	
Kfz-Fahrst			. 1								
Zufahrt	Fahrt-	Nr.	L	b	f _b	R	f _R	S	f _s	L _{LA} /L _{RA}	
	richtung	4.4	[m]	[m]	[-]	[m]	[-]	[%]	[-]	[m]	
1	rechts	11		>= 3,00	1,000	12,00	1,120	0,0	1,000	15	
1	gerade links	11 11		>= 3,00 >= 3,00	1,000	15,00	1,000	0,0	1,000	20	
2	rechts	21		>= 3,00	1,000 1,000	15,00	1,075 1,075	0,0	1,000 1,000	23	
2	gerade	21		>= 3,00	1,000	15,00	1,075	0,0	1,000	23	
2	links	22		>= 3,00	1,000	15,00	1,000	0,0	1,000	14	
3	rechts	31		>= 3,00	1,000	12,00	1,120	0,0	1,000	10	
3	gerade	31		>= 3,00	1,000	-	1,000	0,0	1,000	10	
3	links	31		>= 3,00	1,000	20,00	1,000	0,0	1,000	16	
4	rechts	41		>= 3,00	1,000	12,00	1,120	0,0	1,000	20	
4	gerade	41		>= 3,00	1,000	-	1,000	0,0	1,000		
4	links	42		>= 3,00	1,000	20,00	1,000	0,0	1,000	14	
	r-/Radfahrer			,				, , , , ,		ı	
	Bez.	q _{Fg}	q _{Rad}	t _{vor}	1. Furt	2. Furt	3. Furt	4. Furt			
Zufahrt	Signalgr.	[Fg/h]	[Rad/h]	[s]	Länge	Länge	Länge	Länge			
					[m]	[m]	[m]	[m]			
1	F1	100	0		6,80	-	-	_			
2	F4	100	0		9,80						
3	F3	100	0		7,00						
4	F2	100	0		11,10						

Eorn	nblatt 2				Knotenpun	kt mit Lichtsi	gnalanlage			
FOIII	IDIALL Z			Berechn	ung der Grui	ndlagendater	für den Kfz-	-Verkehr		
		VUS Famila						Stadt		
	Knotenpunkt			phakenstr., F	Prognose Va	<u>riante 1 (1 Αι</u>	usfahrt)	-	21.12.2016	
	Zeitabschnitt	•						Bearbeiter	: kül	
Kfz-Verke	ehrsströme -	Kapazitäten	(strombezo	gen)						
Nr.	Bez.	t _{B,i}	$q_{S,i}$	$t_{F,i}$	$C_{0,i}$	$C_{D,i}$	$C_{PW,i}$	$C_{GF,i}$	$C_{LA,i}$	$C_{\text{RA},i}$
	SG	[s]	[Kfz/h]	[s]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]
1	A	1,935	1860	25	605	222	150		372	
2	Α	1,842	1954	25	635					
3	Α	2,016	1786	25	580					46
4	С	2,011	1790	30	694	286	101		387	
5	С	1,876	1919	30	744					
6	С	1,935	1860	30	721					60
7	В	1,800	2000	25	650	276	120		396	
8	В	1,800	2000	25	650					
9	В	2,016	1786	25	580					465
10	D	2,186	1647	40	844	331	86		417	
11	D	1,954	1842	40	944					
12	D	2,079	1732	40	887					776
		,								
Kfz-Verke	ehrsströme -	Kapazitäten	(fahrstreife	nbezogen)						
Nr.	q _j [Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]	q _{LA} [Kfz/h]	n _k [Kfz]	N _{MS,90,j} [Kfz/h]	C _{K,j} [Kfz/h]	C _{M,j} [Kfz/h]	C _j [Kfz/h]	
11	127	65	11	51		5,111		483		
21	138	107	31			4,737		706		
22	38			38		2,188			387	
31	198	151	14	33		7,070		573		
41	153	105	48			4,414		884		
42	7			7		0,727			417	
				ļ ,						

		Knotenpunkt mit Lichtsignalanlage								
Form	blatt 3					der Verkehr				
	Proiekt	: <u>VUS Famila</u>	in Lohne (2	16213)		,		Stadt	•	
ŀ	-	: KP 07 Meye			Prognose Vai	riante 1 (1 Au	ısfahrt)	=	: 21.12.2016	
	•	: Spitzenstun	•				· · · · · · · · · · · · · · · · · · ·	Bearbeiter		
		Verkehrsqu		rstreifenbez	zogen)					
	Bez.	Ströme	q _j	x _j	f _{A,j}	$N_{GE,i}$	$N_{MS,j}$	L _{95,j}	t _{W,j}	QSV
Nr.	SG		[Kfz/h]	, [-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	А	1, 2, 3	127	0,263	0,25	0,203	2,459	31	25,4	В
21	С	5, 6	138	0,195	0,37	0,137	2,218	29	17,8	Α
22	С	4	38	0,098	0,22	0,061	0,737	14	25,7	В
31	В	7, 8, 9	198	0,346	0,29	0,306	3,781	42	24,4	В
41	D	11, 12	153	0,173	0,49	0,118	2,014	28	11,9	A
42	D	10	7	0,017	0,25	0,009	0,126	5	22,5	В
42	D	10	,	0,017	0,23	0,009	0,120	3	22,3	ь
Gesamt			661						20,4	
Fußgänge	r- /Radfahre	erfurten			l l					
	Bez.	q_{Fg}	q _{Rad}	Anzahl	t _{W,max}					QSV
Zufahrt	SG	[Fg/h]	[Rad/h]	Furten	[s]					[-]
1	F1	100	0	1	55					C
2	F4	100	0	1	62					D
3	F3	100	0	1	55					C
4					62					
4	F2	100	0	1	02					D
								Gesamt	bewertung:	D


Verkehrsfluss-Diagramm in Form einer Einmündung

Projekt : VUS Famila in Lohne

Knotenpunkt: Meyerhofstr. / Adenauerring

Stunde : Sph Analyse

Datei : KP 08-ANALYSE_160802.kob

HBS 2015, Kapitel S5: Stadtstraßen: Knotenpunkte ohne Lichtsignalanlage

Projekt : VUS Famila in Lohne

Knotenpunkt: Meyerhofstr. / Adenauerring

Stunde : Sph Analyse

Datei : KP 08-ANALYSE_160802.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	
2		89				1800					А
3	•	109				1600					А
4	◆ 1	156	6,5	3,2	280	743		6,2	1	2	А
6	-	78	5,9	3,0	144	1007		3,9	1	1	А
Misch-N		234				1096	4+6	4,2	1	2	А
8	•	104				1800					А
7	₩	33	5,5	2,8	198	1026		3,6	1	1	А
Misch-H		137				1800	7 + 8	2,2	1	1	А

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt

Lage des Knotenpunkte : Innerorts Alle Einstellungen nach : HBS 2015

Strassennamen:

Hauptstrasse: Adenauerring (westl.)

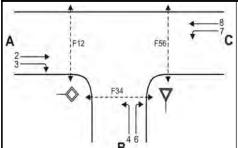
Adenauerring (östl.)

Nebenstrasse: Meyerhofstr.

HBS 2015 S5

KNOBEL Version 7.1.1

IPW INGENIEURPLANUNG Wallenhorst


Α

Anlage 5.8 Formblatt S5-1a: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Adenauerring (wes/B Meyerhofstr. Verkehrsdaten: Datum [] Planung Manalyse Uhrzeit Zufahrt B: 🎸 🔽 Verkehrsregelung: Zufahrt D: 🌠 🔽 Zielvorgaben: Mittlere Wartezeit t $_{\text{W}} = \underline{20 \text{ s}}$ Qualitätsstufe $\underline{\text{B}}$ Geometrische Randbedingungen Zufahrt Verkehrs-Fahrstreifen Fußgängerfurt strom Anzahl Aufstellänge Dreiecksinsel (RA) Mittelinsel FGÜ (0/1/2)n [Pkw-E] (ja/nein) (ja/nein) (ja/nein) 1 3 4a 4b 2 1 ---------Α 3 0 nein nein (für ja, F12 --------nein siehe Ziffer S5.6) 4 1 В 6 0 2 nein --nein (für ja, siehe Ziffer S5.6) F34 nein 7 0 0 ------C 8 1 --nein (für ja, F56 nein siehe Ziffer S5.6)

	Siene Ziner 33.0)												
Bemessungsverkehrsstärken und Verkehrszusammensetzung													
Zufahrt	Verkehrs- strom	Rad	LV	Lkw+Bus	LkwK	Fz (Sp.5 + Sp.6 + Sp.7 + Sp.8)		Pkw-E / Fz (Gl.(S5-2) oder Gl.(S5-3) oder Gl.(S5-4))					
		q _{Rad,i} [Rad/h]	q Lv,i [Pkw/h]	q _{Lkw+Bus,i} [Lkw/h]	q _{LkwK,i} [LkwK/h]	q _{Fz,i} [Fz/h]	q _{Fg,i} [Fg/h]	f _{PE,i}	q _{PE,i} [Pkw-E/h]				
		5	6	7	8	9	10	11	12				
	2	0	89	0	0	89		1,000	89				
А	3	0	109	0	0	109		1,000	109				
	F12						0						
	4	0	154	1	0	155		1,006	156				
В	6	0	76	1	0	77		1,013	78				
	F34						0						
	7	0	33	0	0	33		1,000	33				
С	8	0	102	1	0	103		1,010	104				
	F56						0						

Formblatt S5-1b: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Adenauerring (wes/B Meyerhofstr. F12 F56 Verkehrsdaten: Datum [] Planung Manalyse Uhrzeit Zufahrt B: Verkehrsregelung: []Zufahrt D: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Zielvorgaben: Kapazität der Verkehrsströme 2 und 8 Verkehrsstärke Kapazität Verkehrs-Auslastungsgrad (Sp.13 / Sp.14) x _i [-] strom (Sp.12) q PE,i [Pkw-E/h] C_{PE,i} [Pkw-E/h] 13 14 15 89 1800 2 0,049 8 104 1800 0,058 Grundkapazität der Verkehrsströme 3, 4, 6 und 7 Verkehrs-Verkehrsstärke Hauptströme Grundkapazität Abminderungsfaktor Fg (Sp.12) q _{PE,i} [Pkw-E/h] (Bild S5-2) G_{PE,i} [Pkw-E/h] (Tabelle S5-2) (Bild S5-3) strom q _{p,i} [Fz/h] f _{f,EK,j} [-] 16 18 19 17 ohne RA mit RA ohne RA mit RA ohne RA mit RA 109 3 0 1600 1,000 7 33 198 1026 1,000 (j=F34)ohne RA mit RA 6 78 143 1007 1,000 4 156 279 769 1,000 (j=F12)Kapazität der Verkehrsströme 3, 6 und 7 Verkehrs-Kapazität Auslastungsgrad staufreier Zustand (Gl.(S5-7)) (Sp.18*Sp.19) C_{PE,i} [Pkw-E/h] strom (Gl.(S5-8) mit Sp.2, 16 und 20) (Sp.16/Sp.20) x [-] $p_{0,i}[-]$ 21 22 3 1600 0,068 0,932 7 1026 0,032 0,966 6 1007 0,077 0,923 Kapazität des Verkehrsstroms 4 Auslastungsgrad (Sp.16/Sp.23) Kapazität (Gl.(S5-9))bzw.(Sp.18*Sp.19*Sp.22) C _{PE,4} [Pkw-E/h] Verkehrsstrom X 4 [-] 4 743 0,210

Formblatt S5-1c: Beurteilung einer Einmündung nach HBS 2015 (S5)

Knotenpunkt: A-C Adenauerring (wes/B Meyerhofstr.

Verkehrsdaten: Datum

[] Planung 🥻 Analyse Uhrzeit

Verkehrsregelung: Zufahrt B:

✓
[]

Zufahrt D:

Zielvorgaben: Mittlere Wartezeit t $_{W} = 20 \text{ s}$ Qualitätsstufe \underline{B}

Kapazität der Mischströme

Zufahrt	Verkehrs- strom	Auslastungsgrad (Sp.15, 21, 24)	Aufstellplätze (Sp.2)	Verkehrsstärke (ΣSp.12)	Kapazität (Gl.(S5-10) bzw. (S5-11))	Verkehrszusam- mensetzung (Gl.(S5-5) mit Sp.9 und 11)
		x ¡[-]	n [Pkw-E]	q _{PE,i} [Pkw-E/h]	C _{PE,m} [Pkw-E/h]	f _{PE,m} [-]
		25	26	27	28	29
В	4	0,210		234	1096	1,009
	6	0,077	2		2000	2,003
	7	0,032	0			
С	8	0,058				

Beurteilung der Qualität des Verkehrsablaufs der Fahrzeugströme

Zufahrt	Verkehrs- strom	Verkehrs- zusammen- setzung (Sp.11 u. 29)	Kapazität in Pkw-E/h (Sp.14, 20,	Kapazität in Fz/h (Gl.(S5-31))	Kapazitäts- reserve (GI.(S5-32))	mittlere Wartezeit (Bild S5-24)	Qualitätsstufe (Tabelle S5-1 mit Sp.34)		
		f _{PE,i} bzw. f _{PE,m} [-]	23 und 28) C _{PE,i} bzw. C _{PE,m} [Pkw-E/h]	(Sp.31/Sp.30 C _i bzw. C _m [Fz/h]	(Sp.32-Sp.9) R _i bzw. R _m [Fz/h]	t _{w,i} bzw. t _{w,m} [s]	QSV		
		30	31	32	33	34	35		
A	2	1,000	1800	1800	1711	2,1	А		
7.	3	1,000	1600	1600	1491	2,4	А		
В	4	1,006	743	738	583	6,2	А		
	6	1,013	1007	994	917	3,9	А		
C	7	1,000	1026	1026	993	3,6	А		
	8	1,010	1800	1783	1680	2,1	А		
В	4+6	1,009	1096	1087	855	4,2	А		
С	7+8	1,007	1800	1787	1651	2,2	А		
erreichbare Qualitätsstufe QSV Fz,ges									

Anlage 5.8 Formblatt S5-1d: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Adenauerring (wes/B Meyerhofstr. F12 F56 Verkehrsdaten: Datum [] Planung Y Analyse Uhrzeit Zufahrt B: Verkehrsregelung: []Zufahrt D: Zielvorgaben: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (ohne Mittelinsel) Zufahrt Fußgänger maßgebende Summe der mittl. Wartezeit Summe der Qualitätsstufe (Tabelle S5-1 mit Sp.39) QSV bzw. Rad-Hauptströme Hauptströme (Bild S5-29 mittl. Wartezeit mit Sp.37) verkehrs-(Tabelle S5-9) Σq _{p,i} [Fz/h] ____37 q _{p,i} [Fz/h] t _{w,i} [s] 38 strom $\sum t_{w,i}[s]$ <u>39</u> 40 F1 103 301 F2 198 0 (keine Fussg.)

0 (kein Radf.)

0 (keine Fussg.)

0 (kein Radf.)

0 (keine Fussg.)

0 (kein Radf.)

F23

R11-1

R11-2 F23 F3

F4

F45 R2

F45

F5

F6

R5-1

R5-2

0

232

89

136

Α

В

С

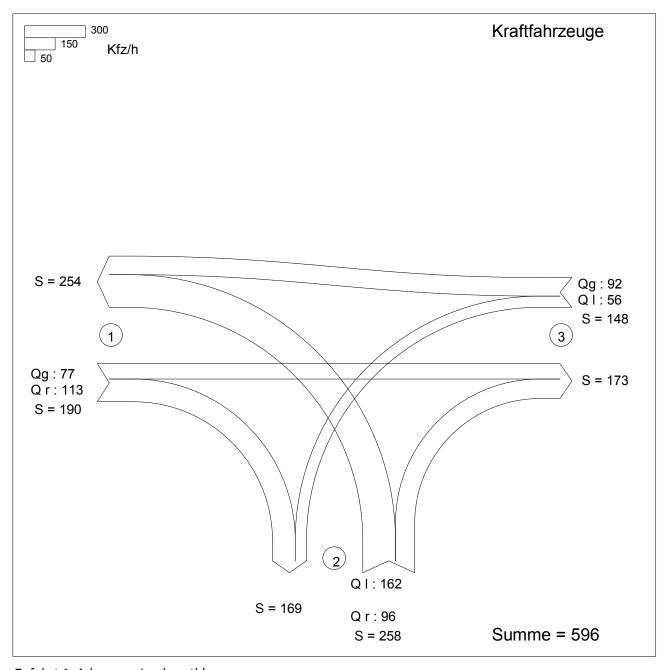
Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (mit Mittelinsel)

232

225

Zufahrt	Fußgänger- bzw. Rad- verkehrs- strom	maßgebende Hauptströme (Tabelle S5-9) q _{p,i} [Fz/h]	mittl. Wartezeit (Bild S5-29 mit Sp.41) $t_{w,i}$ [s]	Summe der mittl. Wartezeit Σt _{w,i} [s]	Qualitätsstufe (Tabelle S5-1 mit Sp.43 QSV	
		41	42	43	44	
	F1					
	F2			siehe	oben	
Α	F23					
	R11-1					
	R11-2					
	F23					
	F3			siehe	oben	
В	F4			Sierie	oben	
	F45					
	R2					
	F45					
	F5			siehe	oben	
С	F6					
	R5-1					
	R5-2					
	•	e	rreichbare Qualitäts	stufe QSV Fg/Rad,ges		

KNOBEL	Version	7 1 1
KINODLL	V C131011	/


Verkehrsfluss-Diagramm in Form einer Einmündung

Projekt : VUS Famila in Lohne

Knotenpunkt: Meyerhofstr. / Adenauerring

Stunde : Sph Prognose Variante 1 (1 Ausfahrt)

Datei : KP 08-PROG-V1_161221.kob

Zufahrt 1: Adenauerring (westl.) Zufahrt 2: Meyerhofstr.

Zufahrt 3: Adenauerring (östl.)

IPW	INGENIEURPLANUNG	Wallenhorst	

HBS 2015, Kapitel S5: Stadtstraßen: Knotenpunkte ohne Lichtsignalanlage

Projekt : VUS Famila in Lohne

Knotenpunkt: Meyerhofstr. / Adenauerring

Stunde : Sph Prognose Variante 1 (1 Ausfahrt)

Datei : KP 08-PROG-V1_161221.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	
2		77				1800					А
3	•	113				1600					Α
4	◆ 1	163	6,5	3,2	282	723		6,5	1	2	А
6	-	97	5,9	3,0	134	1019		3,9	1	1	А
Misch-N		260				1126	4+6	4,2	1	2	А
8	•	93				1800					А
7	₩	56	5,5	2,8	190	1036		3,7	1	1	А
Misch-H		149				1800	7 + 8	2,2	1	1	А

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt

Lage des Knotenpunkte : Innerorts Alle Einstellungen nach : HBS 2015

Strassennamen:

Hauptstrasse: Adenauerring (westl.)

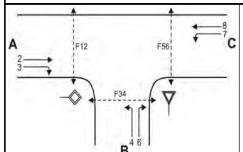
Adenauerring (östl.)

Nebenstrasse: Meyerhofstr.

HBS 2015 S5

KNOBEL Version 7.1.3

IPW INGENIEURPLANUNG Wallenhorst


Α

Anlage 5.8 Formblatt S5-1a: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Adenauerring (wes/B Meyerhofstr. Verkehrsdaten: Datum Planung [] Analyse Uhrzeit Verkehrsregelung: Zufahrt B: Zufahrt D: 🏏 Mittlere Wartezeit t $_{W} = 20 \text{ s}$ Qualitätsstufe \underline{B} Zielvorgaben: Geometrische Randbedingungen Zufahrt Verkehrs-Fahrstreifen Fußgängerfurt strom Anzahl Aufstellänge Dreiecksinsel (RA) Mittelinsel FGÜ (0/1/2)n [Pkw-E] (ja/nein) (ja/nein) (ja/nein) 1 3 4a 4b 2 1 ---------Α 3 0 nein nein (für ja, F12 --------nein siehe Ziffer S5.6) 4 1 В 6 0 2 nein --nein (für ja, siehe Ziffer S5.6) F34 nein 7 0 0 ------C 8 1 nein (für ja, F56 nein siehe Ziffer S5.6)

								SIELLE	2 ZIIIEL 53.01					
	Bemessungsverkehrsstärken und Verkehrszusammensetzung													
Zufahrt	Verkehrs- strom	Rad	LV	Lkw+Bus	LkwK	Fz (Sp.5 + Sp.6 + Sp.7 + Sp.8)		Pkw-E / Fz (Gl.(S5-2) oder Gl.(S5-3) oder Gl.(S5-4))	Pkw-E (Gl. (S5-1)) (Sp.9*Sp.11)					
		q _{Rad,i} [Rad/h]	q Lv,i [Pkw/h]	q _{Lkw+Bus,i} [Lkw/h]	q _{LkwK,i} [LkwK/h]	q _{Fz,i} [Fz/h]	q _{Fg,i} [Fg/h]	f _{PE,i}	q _{PE,i} [Pkw-E/h]					
		5	6	7	8	9	10	11	12					
	2	0	77	0	0	77		1,000	77					
Α	3	0	113	0	0	113		1,000	113					
	F12						0							
	4	0	161	1	0	162		1,006	163					
В	6	0	95	1	0	96		1,010	97					
	F34						0							
	7	0	56	0	0	56		1,000	56					
С	8	0	91	1	0	92		1,011	93					
	F56						0							

Formblatt S5-1b: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Adenauerring (wes/B Meyerhofstr. F12 F56 Verkehrsdaten: Datum Planung [] Analyse Uhrzeit Zufahrt B: Verkehrsregelung: []Zufahrt D: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Zielvorgaben: Kapazität der Verkehrsströme 2 und 8 Verkehrs-Verkehrsstärke Kapazität Auslastungsgrad (Sp.13 / Sp.14) x _i [-] strom (Sp.12) q PE,i [Pkw-E/h] C_{PE,i} [Pkw-E/h] 13 14 15 77 1800 2 0,043 8 93 1800 0,052 Grundkapazität der Verkehrsströme 3, 4, 6 und 7 Verkehrs-Verkehrsstärke Hauptströme Grundkapazität Abminderungsfaktor Fg (Sp.12) q _{PE,i} [Pkw-E/h] (Tabelle S5-2) (Bild S5-2) (Bild S5-3) strom q _{p,i} [Fz/h] G PE,i [Pkw-É/h] f _{f,EK,j} [-] 16 18 19 17 ohne RA mit RA ohne RA mit RA ohne RA mit RA 3 113 0 1600 1,000 7 56 190 1036 1,000 (j=F34)ohne RA mit RA 6 97 133 1019 1,000 4 163 281 767 1,000 (j=F12)Kapazität der Verkehrsströme 3, 6 und 7 Verkehrs-Kapazität Auslastungsgrad staufreier Zustand (Gl.(S5-7)) (Sp.18*Sp.19) C_{PE,i} [Pkw-E/h] strom (Gl.(S5-8) mit Sp.2, 16 und 20) (Sp.16/Sp.20) x [-] p _{0,i}[-] 21 22 3 1600 0,071 0,929 7 1036 0,054 0,943 6 1019 0,095 0,905 Kapazität des Verkehrsstroms 4 Auslastungsgrad (Sp.16/Sp.23) Kapazität (Gl.(S5-9))bzw.(Sp.18*Sp.19*Sp.22) C _{PE,4} [Pkw-E/h] Verkehrsstrom X 4 [-] 4 723 0,225

Formblatt S5-1c: Beurteilung einer Einmündung nach HBS 2015 (S5)

Knotenpunkt: A-C Adenauerring (wes/B Meyerhofstr.

Verkehrsdaten: Datum

Planung [] Analyse Uhrzeit

Verkehrsregelung: Zufahrt B:

Zufahrt D: 🌠 🗸

Zielvorgaben: Mittlere Wartezeit t $_{W} = 20 \text{ s}$ Qualitätsstufe \underline{B}

Kapazität der Mischströme

Zufahrt	Verkehrs- strom	Auslastungsgrad (Sp.15, 21, 24)	Aufstellplätze (Sp.2)	Verkehrsstärke (ΣSp.12)	Kapazität (Gl.(S5-10) bzw. (S5-11))	Verkehrszusam- mensetzung (GI.(S5-5) mit Sp.9 und 11)
		x ¡[-]	n [Pkw-E]	q _{PE,i} [Pkw-E/h]	C _{PE,m} [Pkw-E/h]	f _{PE,m} [-]
		25	26	27	28	29
В	4	0,225		260	1126	1,008
В	6	0,095	2	200	1120	1,000
С	7	0,054	0			
	8	0,052				

Beurteilung der Qualität des Verkehrsablaufs der Fahrzeugströme

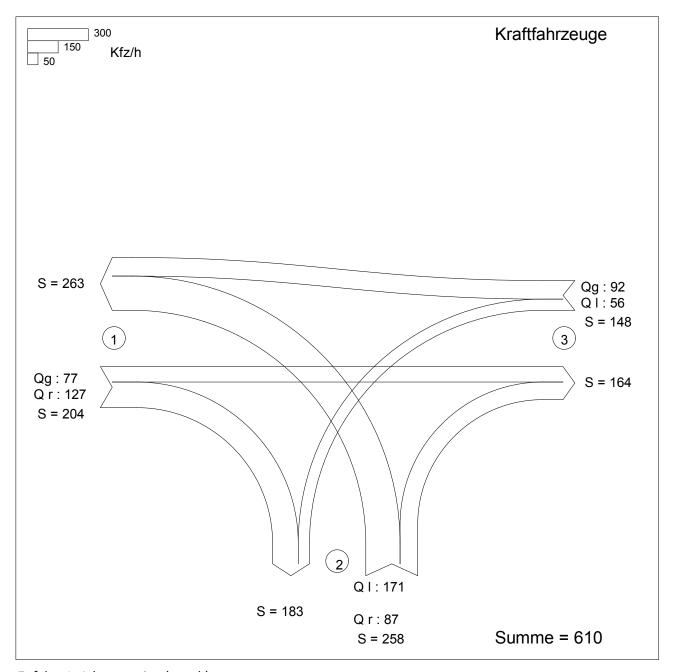
Zufahrt	Verkehrs- strom	Verkehrs- zusammen- setzung (Sp.11 u. 29)	Kapazität in Pkw-E/h (Sp.14, 20,	Kapazität in Fz/h (Gl.(S5-31))	Kapazitäts- reserve (Gl.(S5-32))	mittlere Wartezeit (Bild S5-24)	Qualitätsstufe (Tabelle S5-1 mit Sp.34)		
		f _{PE,i} bzw. f _{PE,m} [-]	23 und 28) C _{PE,i} bzw. C _{PE,m} [Pkw-E/h]	(Sp.31/Sp.30 C _i bzw.	(Sp.32-Sp.9) R _i bzw. R _m [Fz/h]	t _{w,i} bzw. t _{w,m} [s]	QSV 35		
		30	31	32	33	34	35		
A	2	1,000	1800	1800	1723	2,1	А		
A	3	1,000	1600	1600	1487	2,4	А		
В	4	1,006	723	719	557	6,5	А		
	6	1,010	1019	1008	912	3,9	А		
С	7	1,000	1036	1036	980	3,7	А		
	8	1,011	1800	1781	1689	2,1	А		
В	4+6	1,008	1126	1117	859	4,2	А		
С	7+8	1,007	1800	1788	1640	2,2	А		
	erreichbare Qualitätsstufe QSV Fz,ges								

Formblatt S5-1d: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Adenauerring (wee/B Meyerhofstr. Verkehrsdaten: Datum Uhrzeit Verkehrsregelung: Zufahrt B: Planung [] Analyse Verkehrsregelung: Zufahrt B: [] SID Zufahrt D: [] SID Zielvorgaben: Mittlere Wartezeit t w = 20 s Qualitätsstufe B Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (ohne Mittelinsel) Zufahrt Fußgänger maßgebende Hauntströme Hauntströme (Bild S5-29 mittl Wartezeit (Tabelle S5-1

	aut eigenen Radverkenrsanlagen gefunrter Radverkenrsstrome (onne Mittelinsel)										
Zufahrt	bzw. Rad- Hauptst verkehrs- (Tabelle strom q _{p,i} [F		Summe der Hauptströme Σq _{p,i} [Fz/h]	mittl. Wartezeit (Bild S5-29 mit Sp.37) t _{w,i} [s]	Summe der mittl. Wartezeit ∑t _{w,i} [s]	Qualitätsstufe (Tabelle S5-1 mit Sp.39) QSV					
		36	37	38	39	40					
	F1 F2	92 190	282		0 (keine Fussg.))					
A	F23										
	R11-1				0 (kein Radf.)						
	R11-2				o (Keiii Kaaii)						
	F23										
	F3	0	258		0 (keine Fussg.)						
В	F4	258	236								
	F45										
	R2				0 (kein Radf.)						
	F45										
	F5	77	225		0 (keine Fussg.)						
С	F6	148	223								
	R5-1				0 (kein Radf.)						
	R5-2		_ 	-2-	o (Keiii Kaul.)	_ 					

Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (mit Mittelinsel)

Zufahrt	Fußgänger- bzw. Rad- verkehrs- strom	maßgebende Hauptströme (Tabelle S5-9) q _{p,i} [Fz/h]	mittl. Wartezeit (Bild S5-29 mit Sp.41) t _{w,i} [s]	Summe der mittl. Wartezeit Σt _{w,i} [s]	Qualitätsstufe (Tabelle S5-1 mit Sp.43 QSV	
	F1	41	42	43	44	
	F2			siehe	oben	
А	F23					
	R11-1					
	R11-2					
	F23					
	F3			siehe	oben	
В	F4			Sierie	oben	
	F45					
	R2					
	F45					
	F5			siehe	oben	
С	F6					
	R5-1					
	R5-2					
		e	rreichbare Qualitäts	stufe QSV Fg/Rad,ges		


Verkehrsfluss-Diagramm in Form einer Einmündung

Projekt : VUS Famila in Lohne

Knotenpunkt: Meyerhofstr. / Adenauerring

Stunde : Sph Prognose Variante 2 (2 Ausfahrten)

Datei : KP 08-PROG-V2_161208.kob

Zufahrt 1: Adenauerring (westl.) Zufahrt 2: Meyerhofstr. Zufahrt 3: Adenauerring (östl.)

IPW INGENIEURPLANUNG	Wallenhorst
----------------------	-------------

HBS 2015, Kapitel S5: Stadtstraßen: Knotenpunkte ohne Lichtsignalanlage

Projekt : VUS Famila in Lohne

Knotenpunkt: Meyerhofstr. / Adenauerring

Stunde : Sph Prognose Variante 2 (2 Ausfahrten)

Datei : KP 08-PROG-V2_161208.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	
2		77				1800					А
3	*	127				1600					Α
4	◆ 1	172	6,5	3,2	289	716		6,7	1	2	А
6	-	88	5,9	3,0	141	1011		3,9	1	1	А
Misch-N		260				1065	4+6	4,5	1	2	А
8	•	93				1800					А
7	₩	56	5,5	2,8	204	1019		3,7	1	1	А
Misch-H		149				1800	7 + 8	2,2	1	1	А

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt

Lage des Knotenpunkte : Innerorts Alle Einstellungen nach : HBS 2015

Strassennamen:

Hauptstrasse: Adenauerring (westl.)

Adenauerring (östl.)

Nebenstrasse: Meyerhofstr.

HBS 2015 S5

KNOBEL Version 7.1.3

IPW INGENIEURPLANUNG Wallenhorst

Α

Formblatt S5-1a: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Adenauerring (wes/B Meyerhofstr.

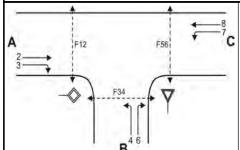
Verkehrsdaten: Datum

Planung [] Analyse Uhrzeit _

Verkehrsregelung: Zufahrt B: \checkmark \checkmark [] \checkmark Zufahrt D: \checkmark \checkmark [] \checkmark

Zielvorgaben: Mittlere Wartezeit t $_{W} = 20 \text{ s}$ Qualitätsstufe \underline{B}

G	eometri	sche	Randh	edinaı	ınaen
J	eomeni	SCITE	Nallub	cumy	ıngen


Zufahrt	Verkehrs-		Fahrstreifen		Fußgä	ngerfurt				
	strom	Anzahl	Aufstellänge	Dreiecksinsel (RA)	Mittelinsel	FGÜ				
		(0/1/2)	n [Pkw-E]	(ja/nein)	(ja/nein)	(ja/nein)				
		1	2	3	4a	4b				
	2	1								
А	3	0		nein						
	F12				nein	nein (für ja, siehe Ziffer S5.6)				
	4	1								
В	6	0	2	nein						
	F34				nein	nein (für ja, siehe Ziffer S5.6)				
	7	0	0							
С	8	1								
	F56				nein	nein (für ja, siehe Ziffer S5.6)				
		Pomossungs	voulcobuoctë ulco	n und Varkahranusa	mmoncotauna	,				

Bemessungsverkehrsstärken und Verkehrszusammensetzung

	Demessungsverkemsstarkem und Verkemszusammensetzung											
Zufahrt	Verkehrs- strom	Rad	LV	Lkw+Bus	LkwK	Fz (Sp.5 + Sp.6 + Sp.7 + Sp.8)		Pkw-E / Fz (Gl.(S5-2) oder Gl.(S5-3) oder Gl.(S5-4))				
		q _{Rad,i} [Rad/h]	q Lv,i [Pkw/h]	q _{Lkw+Bus,i} [Lkw/h]	q _{LkwK,i} [LkwK/h]	q _{Fz,i} [Fz/h]	q _{Fg,i} [Fg/h]	f _{PE,i} [-]	q _{PE,i} [Pkw-E/h]			
		5	6	7	8	9	10	11	12			
	2	0	77	0	0	77		1,000	77			
А	3	0	127	0	0	127		1,000	127			
	F12						0					
	4	0	170	1	0	171		1,006	172			
В	6	0	86	1	0	87		1,011	88			
	F34						0					
	7	0	56	0	0	56		1,000	56			
С	8	0	91	1	0	92		1,011	93			
	F56						0					

Formblatt S5-1b: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Adenauerring (wes/B Meyerhofstr. F12 F56 Verkehrsdaten: Datum Planung [] Analyse Uhrzeit Zufahrt B: Verkehrsregelung: []Zufahrt D: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Zielvorgaben: Kapazität der Verkehrsströme 2 und 8 Verkehrs-Verkehrsstärke Kapazität Auslastungsgrad (Sp.13 / Sp.14) x _i [-] strom (Sp.12) q PE,i [Pkw-E/h] C_{PE,i} [Pkw-E/h] 13 14 15 77 1800 2 0,043 8 93 1800 0,052 Grundkapazität der Verkehrsströme 3, 4, 6 und 7 Verkehrs-Verkehrsstärke Hauptströme Grundkapazität Abminderungsfaktor Fg (Sp.12) q _{PE,i} [Pkw-E/h] (Tabelle S5-2) (Bild S5-2) (Bild S5-3) strom q _{p,i} [Fz/h] G PE,i [Pkw-É/h] f _{f,EK,j} [-] 16 18 19 17 ohne RA mit RA ohne RA mit RA ohne RA mit RA 3 127 0 1600 1,000 7 56 204 1019 1,000 (j=F34)ohne RA mit RA 6 88 140 1011 1,000 4 172 288 760 1,000 (j=F12)Kapazität der Verkehrsströme 3, 6 und 7 Verkehrs-Kapazität Auslastungsgrad staufreier Zustand (Gl.(S5-7)) (Sp.18*Sp.19) C_{PE,i} [Pkw-E/h] strom (Gl.(S5-8) mit Sp.2, 16 und 20) (Sp.16/Sp.20) x [-] $p_{0,i}[-]$ 21 22 3 1600 0,079 0,921 7 1019 0,055 0,942 6 1011 0,087 0,913 Kapazität des Verkehrsstroms 4 Auslastungsgrad (Sp.16/Sp.23) Kapazität (Gl.(S5-9))bzw.(Sp.18*Sp.19*Sp.22) C _{PE,4} [Pkw-E/h] Verkehrsstrom X 4 [-] 4 716 0,240

Formblatt S5-1c: Beurteilung einer Einmündung nach HBS 2015 (S5)

Knotenpunkt: A-C Adenauerring (wes/B Meyerhofstr.

Verkehrsdaten: Datum

Planung [] Analyse Uhrzeit

Verkehrsregelung: Zufahrt B:

Zufahrt D:

Zielvorgaben: Mittlere Wartezeit t $_{W} = 20 \text{ s}$ Qualitätsstufe \underline{B}

Kapazität der Mischströme

			-			
Zufahrt	Verkehrs- strom	Auslastungsgrad (Sp.15, 21, 24)	Aufstellplätze (Sp.2)	Verkehrsstärke (ΣSp.12)	Kapazität (Gl.(S5-10) bzw. (S5-11))	Verkehrszusam- mensetzung (Gl.(S5-5) mit Sp.9 und 11)
		x ¡[-]	n [Pkw-E]	q _{PE,i} [Pkw-E/h]	C PE,m [Pkw-E/h]	
		25	26	27	28	29
В	4	0,240		260	1065	1,008
	6	0,087	2	200	1005	1,000
С	7	0,055	0			
	8	0,052				

Beurteilung der Qualität des Verkehrsablaufs der Fahrzeugströme

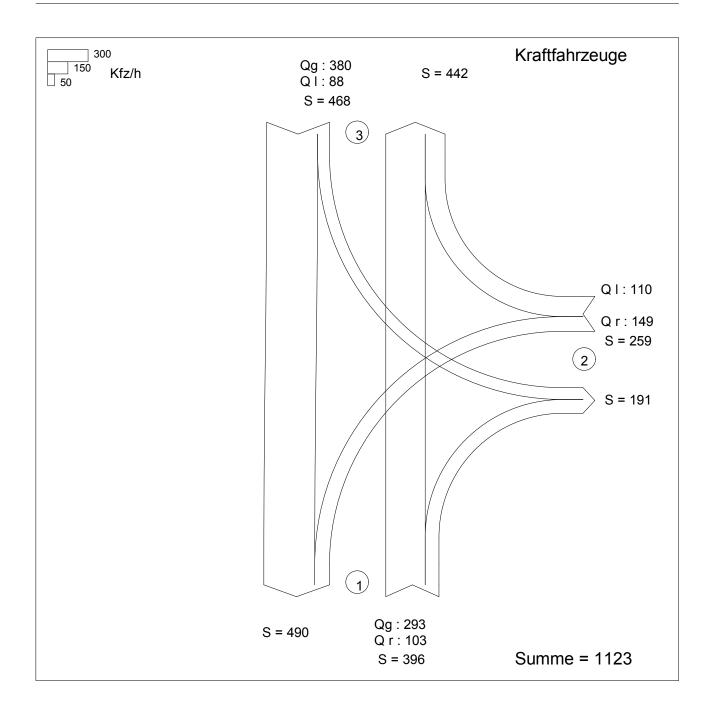
Zufahrt	Verkehrs- strom	Verkehrs- zusammen- setzung (Sp.11 u. 29)	Kapazität in Pkw-E/h (Sp.14, 20,	Kapazität in Fz/h (Gl.(S5-31))	Kapazitäts- reserve (Gl.(S5-32))	mittlere Wartezeit (Bild S5-24)	Qualitätsstufe (Tabelle S5-1 mit Sp.34)	
		f _{PE,i} bzw. f _{PE,m} [-]	23 und 28) C _{PE,i} bzw. C _{PE,m} [Pkw-E/h]	(Sp.31/Sp.30 C _i bzw.	(Sp.32-Sp.9) R _i bzw. R _m [Fz/h]	t _{w,i} bzw. t _{w,m} [s]	QSV 35	
	_							
	2	1,000	1800	1800	1723	2,1	А	
A	3	1,000	1600	1600	1473	2,4	А	
В	4	1,006	716	711	540	6,7	А	
	6	1,011	1011	1000	913	3,9	А	
C	7	1,000	1019	1019	963	3,7	А	
	8	1,011	1800	1781	1689	2,1	А	
В	4+6	1,008	1065	1057	799	4,5	А	
С	7+8	1,007	1800	1788	1640	2,2	А	
	erreichbare Qualitätsstufe QSV Fz,ges							

Formblatt S5-1d: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Adenauerring (wes/B Meyerhofstr. Verkehrsdaten: Datum Uhrzeit Verkehrsregelung: Zufahrt B: Planung [] Analyse Verkehrsregelung: Zufahrt D: [] Zufahrt D: [] Zielvorgaben: Mittlere Wartezeit t w = 20 s Qualitätsstufe B Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (ohne Mittelinsel)

Zufahrt	Fußgänger bzw. Rad- verkehrs- strom	maßgebende Hauptströme (Tabelle S5-9) q _{p,i} [Fz/h]	Summe der Hauptströme Σq _{p,i} [Fz/h]	mittl. Wartezeit (Bild S5-29 mit Sp.37) t _{w,i} [s]	Summe der mittl. Wartezeit Σt _{w,i} [s]	Qualitätsstufe (Tabelle S5-1 mit Sp.39) QSV
		36	37	38	39	40
	F1	92	296			
	F2	204	290		0 (keine Fussg.)	
Α	F23					
	R11-1				0 (kein Radf.)	
	R11-2				0 (Keili Kaul.)	
	F23					
	F3	0	258		0 (keine Fussg.)	
В	F4	258	236			
	F45					
	R2				0 (kein Radf.)	
	F45					
	F5	77	225		0 (keine Fussg.)	
С	F6	148	223			
	R5-1				O (kain Badf)	
	R5-2				0 (kein Radf.)	

Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (mit Mittelinsel)

Zufahrt	Fußgänger- bzw. Rad- verkehrs- strom	maßgebende Hauptströme (Tabelle S5-9) q _{p,i} [Fz/h]	mittl. Wartezeit (Bild S5-29 mit Sp.41) t _{w,i} [s]	Summe der mittl. Wartezeit Σt _{w,i} [s]	Qualitätsstufe (Tabelle S5-1 mit Sp.43 QSV
	F1	41	42	43	44
	F2			siehe	oben
Α	F23				
	R11-1				
	R11-2				
	F23				
	F3			siehe	oben
В	F4			Sierie	oben
	F45				
	R2				
	F45				
	F5			siehe	oben
С	F6				
	R5-1				
	R5-2				
		e	rreichbare Qualitäts	stufe QSV Fg/Rad,ges	


Verkehrsfluss-Diagramm in Form einer Einmündung

Projekt : VUS Famila in Lohne

Knotenpunkt: Vechtaerstr. / Adenauerring

Stunde : Sph Analyse

Datei : KP 09-ANALYSE_160802.kob

HBS 2015, Kapitel S5: Stadtstraßen: Knotenpunkte ohne Lichtsignalanlage

Projekt : VUS Famila in Lohne

Knotenpunkt: Vechtaerstr. / Adenauerring

Stunde : Sph Analyse

Datei : KP 09-ANALYSE_160802.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	
2		307				1800					А
3	•	103				1600					Α
4	▼	111	6,5	3,2	813	332		16,4	2	3	В
6	-	151	5,9	3,0	345	788		5,7	1	2	А
Misch-N		262				680	4+6	8,7	2	3	А
8	•	390				1800					А
7	₩	88	5,5	2,8	396	819		4,9	1	1	А
Misch-H		390				1800					

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt

Lage des Knotenpunkte : Innerorts Alle Einstellungen nach : HBS 2015

Strassennamen:

Hauptstrasse: Vechtaer Str. (südl.)

Vechtaer Str. (nördl.)

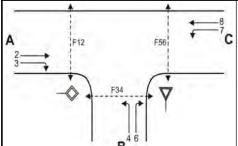
Nebenstrasse: Adenauerring

HBS 2015 S5

KNOBEL Version 7.1.1

IPW INGENIEURPLANUNG Wallenhorst

В


Anlage 5.9 Formblatt S5-1a: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Vechtaer Str. (süd/B Adenauerring Verkehrsdaten: Datum [] Planung 🕍 Analyse Uhrzeit Verkehrsregelung: Zufahrt B: Zufahrt D: 🌠 🔽 Zielvorgaben: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Geometrische Randbedingungen Zufahrt Verkehrs-Fahrstreifen Fußgängerfurt strom Anzahl Aufstellänge Dreiecksinsel (RA) Mittelinsel FGÜ (0/1/2)n [Pkw-E] (ja/nein) (ja/nein) (ja/nein) 1 3 4a 4b 2 1 ---------3 0 Α --nein nein (für ja, F12 --------ja siehe Ziffer S5.6) 4 1 В 6 0 1 nein --nein (für ja, siehe Ziffer S5.6) F34 --ja 7 1 4 ------С 8 1 nein (für ja, F56 nein siehe Ziffer S5.6) Bemessungsverkehrsstärken und Verkehrszusammensetzung Zufahrt | Verkehrs- | Rad | LV | Lkw+Bus | LkwK | Fz Fg Pkw-E / Fz Pkw-E

Q Rad,i	. (S5-1)) .9*Sp.11)
A 3 0 103 0 0 103 1,048 F12 0	q _{PE,i} kw-E/h]
A 3 0 103 0 0 103 1,000 F12 0	12
F12 0	307
	103
4 0 100 1 0 110 1000	
4 0 109 1 0 110 1,009	111
B 6 0 146 3 0 149 1,013	151
F34 0	
7 0 88 0 0 88 1,000	88
C 8 0 361 19 0 380 1,026	390
F56 0	

Formblatt S5-1b: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Vechtaer Str. (süd/B Adenauerring F12 F56 Verkehrsdaten: Datum Uhrzeit [] Planung Y Analyse Zufahrt B: Verkehrsregelung: []Zufahrt D: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Zielvorgaben: Kapazität der Verkehrsströme 2 und 8 Verkehrsstärke Kapazität Verkehrs-Auslastungsgrad (Sp.13 / Sp.14) x _i[-] strom (Sp.12) q PE,i [Pkw-E/h] C_{PE,i} [Pkw-E/h] 13 14 15 307 1800 2 0,171 8 390 1800 0,217 Grundkapazität der Verkehrsströme 3, 4, 6 und 7 Verkehrs-Verkehrsstärke Hauptströme Grundkapazität Abminderungsfaktor Fg (Sp.12) q _{PE,i} [Pkw-E/h] (Bild S5-2) G_{PE,i} [Pkw-E/h] (Tabelle S5-2) (Bild S5-3) strom q _{p,i} [Fz/h] f _{f,EK,j} [-j 16 17 18 19 ohne RA mit RA ohne RA mit RA ohne RA mit RA 3 103 0 1600 1,000 7 88 396 819 1,000 (j=F34)ohne RA mit RA 6 151 344 788 1,000 4 111 812 372 1,000 (j=F12)Kapazität der Verkehrsströme 3, 6 und 7 Verkehrs-Kapazität Auslastungsgrad staufreier Zustand (Gl.(S5-7)) (Sp.18*Sp.19) C_{PE,i} [Pkw-E/h] strom (Gl.(S5-8) mit Sp.2, 16 und 20) (Sp.16/Sp.20) x [-] $p_{0,i}[-]$ 21 22 3 1600 0,064 0,936 7 819 0,893 0,107 788 6 0,192 0,808 Kapazität des Verkehrsstroms 4 Auslastungsgrad (Sp.16/Sp.23) Kapazität (Gl.(S5-9))bzw.(Sp.18*Sp.19*Sp.22) C _{PE,4} [Pkw-E/h] Verkehrsstrom X 4 [-] 4 332 0,334

KNOBEL	Version	7.1	. 1

Formblatt S5-1c: Beurteilung einer Einmündung nach HBS 2015 (S5)

Knotenpunkt: A-C Vechtaer Str. (süd/B Adenauerring

Verkehrsdaten: Datum

[] Planung 🥻 Analyse Uhrzeit

Verkehrsregelung: Zufahrt B:

✓
[]

Zufahrt D:

Y

[]

Zielvorgaben: Mittlere Wartezeit t $_{W} = 20 \text{ s}$ Qualitätsstufe \underline{B}

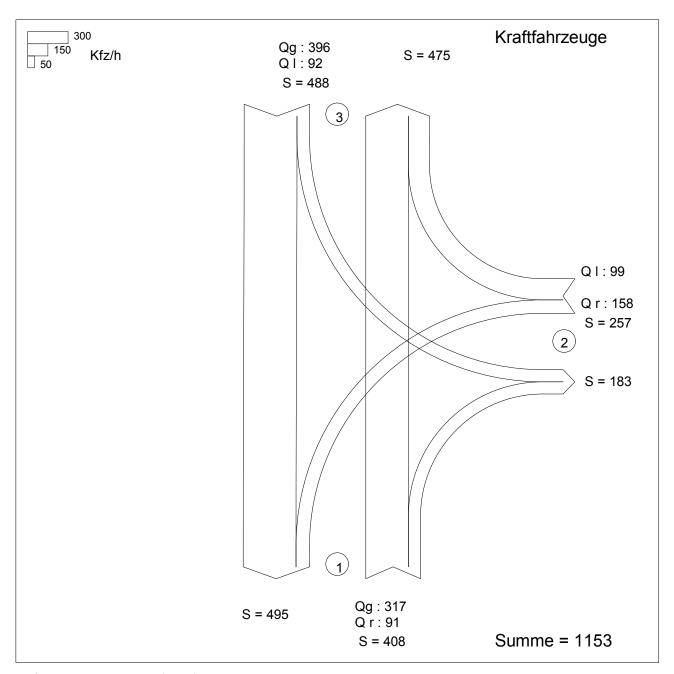
Kapazität der Mischströme

Zufahrt	Verkehrs- strom	Auslastungsgrad (Sp.15, 21, 24)	Aufstellplätze (Sp.2)	Verkehrsstärke (ΣSp.12)	Kapazität (Gl.(S5-10) bzw. (S5-11))	Verkehrszusam- mensetzung (Gl.(S5-5) mit Sp.9 und 11)
		x ¡[-]	n [Pkw-E]	q _{PE,i} [Pkw-E/h]	C _{PE,m} [Pkw-E/h]	f _{PE,m} [-]
		25	26	27	28	29
В	4	0,334		262	680	1,012
	6	0,192	1			_,
С	7	0,107	4			
	8	0,217				

Beurteilung der Qualität des Verkehrsablaufs der Fahrzeugströme

Zufahrt	Verkehrs- strom	Verkehrs- zusammen- setzung (Sp.11 u. 29)	Kapazität in Pkw-E/h (Sp.14, 20,	Kapazität in Fz/h (GI.(S5-31))	Kapazitäts- reserve (Gl.(S5-32))	mittlere Wartezeit (Bild S5-24)	Qualitätsstufe (Tabelle S5-1 mit Sp.34)	
		f _{PE,i} bzw. f _{PE,m} [-]	23 und 28) C _{PE,i} bzw. C _{PE,m} [Pkw-E/h]	(Sp.31/Sp.30 C _i bzw. C _m [Fz/h]	(Sp.32-Sp.9) R _i bzw. R _m [Fz/h]	t _{w,i} bzw. t _{w,m} [s]	QSV	
		30	31	32	33	34	35	
A	2	1,048	1800	1718	1425	2,5	А	
	3	1,000	1600	1600	1497	2,4	А	
В	4	1,009	332	329	219	16,4	В	
Ь	6	1,013	788	778	629	5,7	А	
С	7	1,000	819	819	731	4,9	А	
	8	1,026	1800	1754	1374	2,6	А	
В	4+6	1,012	680	672	413	8,7	А	
С	7+8							
	erreichbare Qualitätsstufe QSV _{Fz.ges}							

Anlage 5.9 Formblatt S5-1d: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Vechtaer Str. (süd/B Adenauerring F12 F56 Verkehrsdaten: Datum Uhrzeit [] Planung Manalyse Zufahrt B: Verkehrsregelung: Zufahrt D: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Zielvorgaben: Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (ohne Mittelinsel) Zufahrt Fußgänger maßgebende Summe der mittl. Wartezeit Summe der Qualitätsstufe (Bild S5-29 mit Sp.37) t _{w,i} [s] (Tabelle S5-1 mit Sp.39) QSV bzw. Rad-Hauptströme Hauptströme mittl. Wartezeit verkehrs-(Tabelle S5-9) Σq _{p,i} [Fz/h] q _{p,i}[Fz/h] strom $\sum t_{w,i}[s]$ <u>39</u> 40 F1 F2 siehe unten F23 Α R11-1 R11-2 F23 F3 siehe unten F4 В F45 R2 F45 ------F5 293 0 (keine Fussg.) 761 С F6 468 R5-1 0 (kein Radf.) ---R5-2


Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (mit Mittelinsel)

Zufahrt	Fußgänger- bzw. Rad- verkehrs- strom	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Summe der mittl. Wartezeit Σt _{w,i} [s]	Qualitätsstufe (Tabelle S5-1 mit Sp.43 QSV
		41	42	43	44
	F1	380			
	F2	396		0 (keine Fussg.)	
Α	F23				
	R11-1			0 (kein Radf.)	
	R11-2			o (keiii kaui.)	
	F23				
	F3	0		0 (keine Fussg.)	
В	F4	259		o (keille russy.)	
	F45				
	R2			0 (kein Radf.)	
	F45				
	F5			siehe	oben
С	F6				
	R5-1				
	R5-2				
		e	rreichbare Qualitäts	stufe QSV Fg/Rad,ges	

Verkehrsfluss-Diagramm in Form einer Einmündung

: VUS Famila in Lohne Projekt

Knotenpunkt: Vechtaerstr. / Adenauerring : Sph Prognose 1 (1 Ausfahrt) Stunde Datei : KP 09-PROG-V1_161221.kob

Zufahrt 1: Vechtaer Str. (südl.) Zufahrt 2: Adenauerring Zufahrt 3: Vechtaer Str. (nördl.)

IPW INGENIEURPLANUNG	Wallenhorst
----------------------	-------------

HBS 2015, Kapitel S5: Stadtstraßen: Knotenpunkte ohne Lichtsignalanlage

Projekt : VUS Famila in Lohne

Knotenpunkt: Vechtaerstr. / Adenauerring
Stunde: Sph Prognose 1 (1 Ausfahrt)
Datei: KP 09-PROG-V1_161221.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	
2		331				1800					А
3	•	91				1600					Α
4	◆ 1	100	6,5	3,2	851	313		17,0	2	3	В
6	₽	160	5,9	3,0	363	770		6,0	1	2	А
Misch-N		260				683	4+6	8,6	2	3	А
8	•	406				1800					А
7	₩	92	5,5	2,8	408	808		5,0	1	1	А
Misch-H		406				1800					

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt

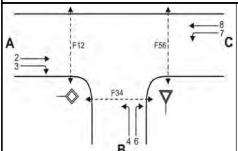
Lage des Knotenpunkte : Innerorts Alle Einstellungen nach : HBS 2015

Strassennamen:

Hauptstrasse: Vechtaer Str. (südl.)

Vechtaer Str. (nördl.)

Nebenstrasse: Adenauerring


HBS 2015 S5

KNOBEL Version 7.1.3

IPW INGENIEURPLANUNG Wallenhorst

В

Formblatt S5-1a: Beurteilung einer Einmündung nach HBS 2015 (S5)

Knotenpunkt: A-C Vechtaer Str. (süd/B Adenauerring

Verkehrsdaten: Datum

_____ Planung [] Analyse Uhrzeit

Verkehrsregelung: Zufahrt B: \(\forall \sqrt{V} \quad \text{[] stop} \)
Zufahrt D: \(\forall \sqrt{V} \quad \text{[] stop} \)

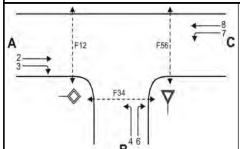
Zielvorgaben: Mittlere Wartezeit t $_{W} = 20 \text{ s}$ Qualitätsstufe \underline{B}

Geometrische	Randbedingungen
--------------	-----------------

Zufahrt	Verkehrs-		Fahrstreifen		Fußgängerfurt		
	strom	Anzahl	Aufstellänge Dreiecksinsel (RA)		Mittelinsel	FGÜ	
		(0/1/2)	n [Pkw-E]	(ja/nein)	(ja/nein)	(ja/nein)	
		1	2	3	4a	4b	
	2 1						
Α	3	0		nein			
	F12				ja	nein (für ja, siehe Ziffer S5.6)	
	4	1					
В	6	0	1	nein			
	F34				ja	nein (für ja, siehe Ziffer S5.6)	
	7	1	4				
С	8	1					
	F56				nein	nein (für ja, siehe Ziffer S5.6)	

Bemessungsverkehrsstärken und Verkehrszusammensetzung

	Demessungsverkemsstarken und Verkemszusammensetzung									
Zufahrt	Verkehrs- strom	Rad	LV	Lkw+Bus	LkwK	Fz (Sp.5 + Sp.6 + Sp.7 + Sp.8)	Fg	Pkw-E / Fz (Gl.(S5-2) oder Gl.(S5-3) oder Gl.(S5-4))		
		q _{Rad,i} [Rad/h]	q Lv,i [Pkw/h]	q _{Lkw+Bus,i} [Lkw/h]	q _{LkwK,i} [LkwK/h]	q _{Fz,i} [Fz/h]	q _{Fg,i} [Fg/h]	f _{PE,i}	q _{PE,i} [Pkw-E/h]	
		5	6	7	8	9	10	11	12	
	2	0	289	28	0	317		1,044	331	
Α	3	0	91	0	0	91		1,000	91	
	F12						0			
	4	0	98	1	0	99		1,010	100	
В	6	0	155	3	0	158		1,013	160	
	F34						0			
	7	0	92	0	0	92		1,000	92	
С	8	0	377	19	0	396		1,025	406	
	F56						0			


KNOBEL Version 7.1.3

IPW INGENIEURPLANUNG

Wallenhorst

Formblatt S5-1b: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Vechtaer Str. (süd/B Adenauerring F12 F56 Verkehrsdaten: Datum Planung [] Analyse Uhrzeit Zufahrt B: Verkehrsregelung: []Zufahrt D: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Zielvorgaben: Kapazität der Verkehrsströme 2 und 8 Verkehrs-Verkehrsstärke Kapazität Auslastungsgrad (Sp.13 / Sp.14) x _i [-] strom (Sp.12) q PE,i [Pkw-E/h] C_{PE,i} [Pkw-E/h] 13 14 15 1800 2 331 0,184 406 8 1800 0,226 Grundkapazität der Verkehrsströme 3, 4, 6 und 7 Verkehrs-Verkehrsstärke Hauptströme Grundkapazität Abminderungsfaktor Fg (Sp.12) q _{PE,i} [Pkw-E/h] (Tabelle S5-2) (Bild S5-2) (Bild S5-3) strom q _{p,i} [Fz/h] G PE,i [Pkw-É/h] f _{f,EK,j} [-] 16 18 19 17 ohne RA mit RA ohne RA mit RA ohne RA mit RA 91 3 0 1600 1,000 7 92 408 808 1,000 (j=F34)ohne RA mit RA 6 160 362 770 1,000 4 100 850 354 1,000 (j=F12)Kapazität der Verkehrsströme 3, 6 und 7 Verkehrs-Kapazität Auslastungsgrad staufreier Zustand (Gl.(S5-7)) (Sp.18*Sp.19) C_{PE,i} [Pkw-E/h] strom (Gl.(S5-8) mit Sp.2, 16 und 20) (Sp.16/Sp.20) x [-] $p_{0,i}[-]$ 21 22 3 1600 0,057 0,943 7 808 0,886 0,114 770 6 0,208 0,792 Kapazität des Verkehrsstroms 4 Auslastungsgrad (Sp.16/Sp.23) Kapazität (Gl.(S5-9))bzw.(Sp.18*Sp.19*Sp.22) C _{PE,4} [Pkw-E/h] Verkehrsstrom X 4 [-] 4 313 0,319

Formblatt S5-1c: Beurteilung einer Einmündung nach HBS 2015 (S5)

Knotenpunkt: A-C Vechtaer Str. (süd/B Adenauerring

Verkehrsdaten: Datum

✓ Planung [] Analyse Uhrzeit

Verkehrsregelung: Zufahrt B: 🇹 🔻

Zufahrt D:

Zielvorgaben: Mittlere Wartezeit t $_{W} = 20 \text{ s}$ Qualitätsstufe \underline{B}

Kapazität der Mischströme

Zufahrt	Verkehrs- strom	Auslastungsgrad (Sp.15, 21, 24)	Aufstellplätze (Sp.2)	Verkehrsstärke (ΣSp.12)	Kapazität (Gl.(S5-10) bzw. (S5-11))	Verkehrszusam- mensetzung (Gl.(S5-5) mit Sp.9 und 11)
		x ¡[-]	n [Pkw-E]	q _{PE,i} [Pkw-E/h]	C _{PE,m} [Pkw-E/h]	f _{PE,m} [-]
		25	26	27	28	29
В	4	0,319		260	683	1,012
	6	0,208	1			
С	7	0,114	4			
	8	0,226				

Beurteilung der Qualität des Verkehrsablaufs der Fahrzeugströme

Zufahrt	Verkehrs- strom	Verkehrs- zusammen- setzung (Sp.11 u. 29)	Kapazität in Pkw-E/h (Sp.14, 20,	Kapazität in Fz/h (GI.(S5-31))	Kapazitäts- reserve (Gl.(S5-32))	mittlere Wartezeit (Bild S5-24)	Qualitätsstufe (Tabelle S5-1 mit Sp.34)		
		f _{PE,i} bzw. f _{PE,m} [-]	23 und 28) C _{PE,i} bzw. C _{PE,m} [Pkw-E/h]	(Sp.31/Sp.30 C _i bzw. C _m [Fz/h]	(Sp.32-Sp.9) R _i bzw. R _m [Fz/h]	t _{w,i} bzw. t _{w,m} [s]	QSV		
		30	31	32	33	34	35		
A	2	1,044	1800	1724	1407	2,6	А		
	3	1,000	1600	1600	1509	2,4	А		
В	4	1,010	313	310	211	17,0	В		
	6	1,013	770	760	602	6,0	А		
	7	1,000	808	808	716	5,0	А		
	C 8 1,025		1800	1756	1360	2,6	А		
В	4+6	1,012	683	675	418	8,6	А		
С	7+8								
_	erreichbare Qualitätsstufe QSV _{Fz,ges}								

Anlage 5.9 Formblatt S5-1d: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Vechtaer Str. (süd/B Adenauerring F12 F56 Verkehrsdaten: Datum Planung [] Analyse Uhrzeit Zufahrt B: Verkehrsregelung: Zufahrt D: Zielvorgaben: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (ohne Mittelinsel) Zufahrt Fußgänger maßgebende Summe der mittl. Wartezeit Summe der Qualitätsstufe (Bild S5-29 mit Sp.37) t _{w,i} [s] (Tabelle S5-1 mit Sp.39) QSV bzw. Rad-Hauptströme Hauptströme mittl. Wartezeit verkehrs-(Tabelle S5-9) Σq _{p,i} [Fz/h] q _{p,i}[Fz/h] strom $\sum t_{w,i}[s]$ <u>39</u> 40 F1 F2 siehe unten F23 Α R11-1

Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (mit Mittelinsel)

805

R11-2 F23 F3

F4

F45 R2 F45

F5

F6

R5-1

R5-2

317

488

В

С

Zufahrt	Fußgänger- bzw. Rad- verkehrs- strom	maßgebende Hauptströme (Tabelle S5-9) q _{p,i} [Fz/h]	mittl. Wartezeit (Bild S5-29 mit Sp.41) t _{w,i} [s]	Summe der mittl. Wartezeit Σt _{w,i} [s]	Qualitätsstufe (Tabelle S5-1 mit Sp.43 QSV	
		41	42	43	44	
	F1	396				
	F2	408		0 (keine Fussg.)		
Α	F23					
	R11-1			0 (kein Radf.)		
	R11-2			o (keiii kaui.)	= 	
	F23					
	F3	0		O (kaina Eusag)		
В	F4	257		0 (keine Fussg.)		
	F45					
	R2			0 (kein Radf.)		
	F45					
	F5			siehe	oben	
С	F6					
	R5-1					
	R5-2]		
	•	e	rreichbare Qualitäts	stufe QSV Fg/Rad,ges		

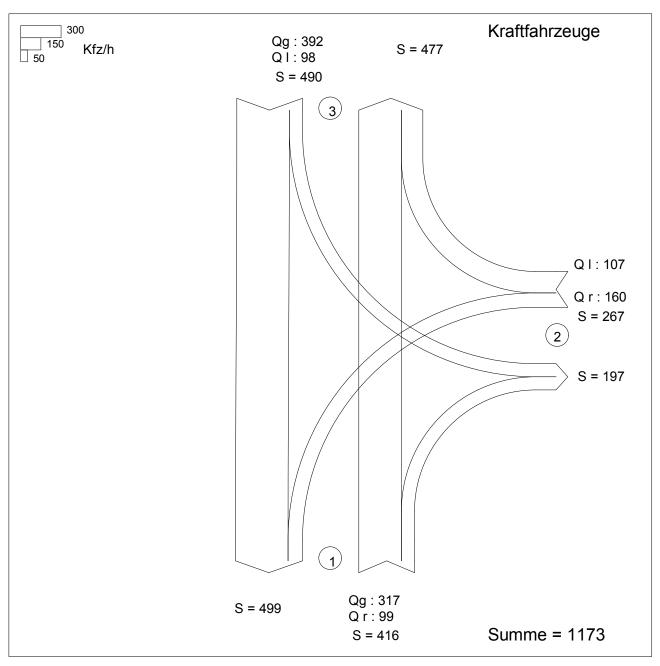
KNOBEL Version 7.1.3

siehe

0 (keine Fussg.)

0 (kein Radf.)

unten


Verkehrsfluss-Diagramm in Form einer Einmündung

Projekt : VUS Famila in Lohne

Knotenpunkt: Vechtaerstr. / Adenauerring

: Sph Prognose Variante 2 (2 Ausfahrten) Stunde

Datei : KP 09-PROG-V2_161208.kob

Zufahrt 1: Vechtaer Str. (südl.) Zufahrt 2: Adenauerring Zufahrt 3: Vechtaer Str. (nördl.)

IPW INGENIEURPLANUNG	Wallenhorst
----------------------	-------------

HBS 2015, Kapitel S5: Stadtstraßen: Knotenpunkte ohne Lichtsignalanlage

Projekt : VUS Famila in Lohne

Knotenpunkt: Vechtaerstr. / Adenauerring

Stunde : Sph Prognose Variante 2 (2 Ausfahrten)

Datei : KP 09-PROG-V2_161208.kob

Strom	Strom	q-vorh	tg	tf	q-Haupt	q-max	Misch-	W	N-95	N-99	QSV
-Nr.		[PWE/h]	[s]	[s]	[Fz/h]	[PWE/h]	strom	[s]	[Pkw-E]	[Pkw-E]	
2		331				1800					А
3	•	99				1600					А
4	◆ 1	108	6,5	3,2	857	308		18,1	2	3	В
6	₽	162	5,9	3,0	367	767		6,0	1	2	А
Misch-N		270				659	4+6	9,3	3	4	А
8	•	402				1800					А
7	₩	98	5,5	2,8	416	801		5,1	1	1	А
Misch-H		402				1800					

Qualitätsstufe des Verkehrsablaufs für den gesamten Knotenpunkt

Lage des Knotenpunkte : Innerorts Alle Einstellungen nach : HBS 2015

Strassennamen:

Hauptstrasse: Vechtaer Str. (südl.)

Vechtaer Str. (nördl.)

Nebenstrasse: Adenauerring

HBS 2015 S5

KNOBEL Version 7.1.3

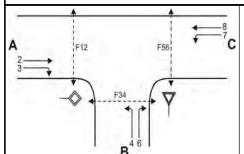
IPW INGENIEURPLANUNG Wallenhorst

В

Formblatt S5-1a: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Vechtaer Str. (süd/B Adenauerring Verkehrsdaten: Datum Uhrzeit Verkehrsregelung: Zufahrt B:

Zielvorgaben: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B

Zufahrt D:


	Geometrische Randbedingungen									
Zufahrt	Verkehrs-		Fahrstreifen		Fußgä	ßgängerfurt				
	strom	Anzahl	Aufstellänge	Dreiecksinsel (RA)	Mittelinsel	FGÜ				
		(0/1/2)	n [Pkw-E]	(ja/nein)	(ja/nein)	(ja/nein)				
		1	2	3	4a	4b				
	2	1								
Α	3	0		nein						
	F12				ja	nein (für ja, siehe Ziffer S5.6)				
	4	1								
В	6	0	1	nein						
	F34				ja	nein (für ja, siehe Ziffer S5.6)				
	7	1	4							
С	8	1								
	F56				nein	nein (für ja, siehe Ziffer S5.6)				

Bemessungsverkehrsstärken und Verkehrszusammensetzung Pkw-E / Fz (Gl.(S5-2) oder Gl.(S5-3) oder Gl.(S5-4)) f _{PE,i} [-] LV Pkw-E (Gl. (S5-1)) (Sp.9*Sp.11) Fz (Sp.5 + Sp.6 + Sp.7 + Sp.8) Zufahrt | Verkehrs-Rad Lkw+Bus LkwK strom q Lv,i q Lkw+Bus,i [Pkw/h] [Lkw/h] q _{LkwK,i} [LkwK/h] q _{Fg,i} [Fg/h] q _{PE,i} [Pkw-E/h] q _{Fz,i} [Fz/h] 5 6 8 9 10 11 12 2 0 289 28 0 317 331 1,044 Α 3 0 99 0 0 99 1,000 99 ---F12 0 ------------------4 0 106 1 0 107 ---1,009 108 В 6 0 157 3 160 1,013 162 0 ---0 F34 ---------------------7 0 98 0 0 98 1,000 98 C 8 0 373 19 0 392 1,026 402 F56 0

Formblatt S5-1b: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Vechtaer Str. (süd/B Adenauerring F12 F56 Verkehrsdaten: Datum Planung [] Analyse Uhrzeit Zufahrt B: Verkehrsregelung: []Zufahrt D: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Zielvorgaben: Kapazität der Verkehrsströme 2 und 8 Verkehrsstärke Kapazität Verkehrs-Auslastungsgrad (Sp.13 / Sp.14) x _i [-] strom (Sp.12) q PE,i [Pkw-E/h] C_{PE,i} [Pkw-E/h] 13 14 15 1800 2 331 0,184 8 402 1800 0,223 Grundkapazität der Verkehrsströme 3, 4, 6 und 7 Verkehrs-Verkehrsstärke Hauptströme Grundkapazität Abminderungsfaktor Fg (Sp.12) q _{PE,i} [Pkw-E/h] (Bild S5-2) G_{PE,i} [Pkw-E/h] (Tabelle S5-2) (Bild S5-3) strom q _{p,i} [Fz/h] f _{f,EK,j} [-] 16 18 19 17 ohne RA mit RA ohne RA mit RA ohne RA mit RA 99 3 0 1600 1,000 7 98 416 801 1,000 (j=F34)ohne RA mit RA 6 162 366 767 1,000 4 108 856 351 1,000 (j=F12)Kapazität der Verkehrsströme 3, 6 und 7 Verkehrs-Kapazität Auslastungsgrad staufreier Zustand (Gl.(S5-7)) (Sp.18*Sp.19) C_{PE,i} [Pkw-E/h] strom (Gl.(S5-8) mit Sp.2, 16 und 20) (Sp.16/Sp.20) x [-] $p_{0,i}[-]$ 21 22 3 1600 0,062 0,938 7 801 0,878 0,122 767 6 0,211 0,789 Kapazität des Verkehrsstroms 4 Auslastungsgrad (Sp.16/Sp.23) Kapazität (Gl.(S5-9))bzw.(Sp.18*Sp.19*Sp.22) C _{PE,4} [Pkw-E/h] Verkehrsstrom X 4 [-] 308 4 0,351

KNOBEL	Version	713
KINODLL	V C131011	7.1.3

Formblatt S5-1c: Beurteilung einer Einmündung nach HBS 2015 (S5)

Knotenpunkt: A-C Vechtaer Str. (süd/B Adenauerring

Verkehrsdaten: Datum

✓ Planung [] Analyse Uhrzeit

Verkehrsregelung: Zufahrt B: 🇹 🔻

Zufahrt D: 🌠 🗸

Zielvorgaben: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B

Kapazität	der	Mischströme
-----------	-----	-------------

Zufahrt	Verkehrs- strom	Auslastungsgrad (Sp.15, 21, 24)	Aufstellplätze (Sp.2)	Verkehrsstärke (ΣSp.12)	Kapazität (Gl.(S5-10) bzw. (S5-11))	Verkehrszusam- mensetzung (Gl.(S5-5) mit Sp.9 und 11)
		x ¡[-]	n [Pkw-E]	q _{PE,i} [Pkw-E/h]	C _{PE,m} [Pkw-E/h]	f _{PE,m} [-]
		25	26	27	28	29
В	4	0,351		270	659	1,011
	6	0,211	1	_, ~		
С	7	0,122	4			
	8	0,223				

Beurteilung der Qualität des Verkehrsablaufs der Fahrzeugströme

Zufahrt	Verkehrs- strom	Verkehrs- zusammen- setzung (Sp.11 u. 29)	Kapazität in Pkw-E/h (Sp.14, 20,	Kapazität in Fz/h (GI.(S5-31))	Kapazitäts- reserve (GI.(S5-32))	mittlere Wartezeit (Bild S5-24)	Qualitätsstufe (Tabelle S5-1 mit Sp.34)
		f _{PE,i} bzw. f _{PE,m} [-]	23 und 28) C _{PE,i} bzw. C _{PE,m} [Pkw-E/h]	(Sp.31/Sp.30 C _i bzw. C _m [Fz/h]	(Sp.32-Sp.9) R _i bzw. R _m [Fz/h]	t _{w,i} bzw. t _{w,m} [s]	QSV
		30	31	32	33	34	35
A	2	1,044	1800	1724	1407	2,6	А
	3	1,000	1600	1600	1501	2,4	А
В	4	1,009	308	305	198	18,1	В
	6	1,013	767	758	598	6,0	А
С	7	1,000	801	801	703	5,1	А
	8	1,026	1800	1755	1363	2,6	Α
В	4+6	1,011	659	652	385	9,3	А
С	7+8						
				erreichbare	Qualitätsstuf	e QSV _{Fz,ges}	В

Anlage 5.9 Formblatt S5-1d: Beurteilung einer Einmündung nach HBS 2015 (S5) Knotenpunkt: A-C Vechtaer Str. (süd/B Adenauerring F12 F56 Verkehrsdaten: Datum Planung [] Analyse Uhrzeit Zufahrt B: Verkehrsregelung: Zufahrt D: Zielvorgaben: Mittlere Wartezeit t $_{W}$ = 20 s Qualitätsstufe B Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (ohne Mittelinsel) Zufahrt Fußgänger maßgebende Summe der mittl. Wartezeit Summe der Qualitätsstufe (Bild S5-29 mit Sp.37) t _{w,i} [s] (Tabelle S5-1 mit Sp.39) QSV bzw. Rad-Hauptströme Hauptströme mittl. Wartezeit verkehrs-(Tabelle S5-9) Σq _{p,i} [Fz/h] q _{p,i}[Fz/h] strom $\sum t_{w,i}[s]$ <u>39</u> 40 F1 F2 siehe unten F23 Α R11-1 R11-2 F23 F3 siehe unten F4 В

Beurteilung der Qualität des Verkehrsablaufs der Fußgängerströme und auf eigenen Radverkehrsanlagen geführter Radverkehrsströme (mit Mittelinsel)

807

0 (keine Fussg.)

0 (kein Radf.)

F45 R2 F45

F5

F6 R5-1

R5-2

С

317

490

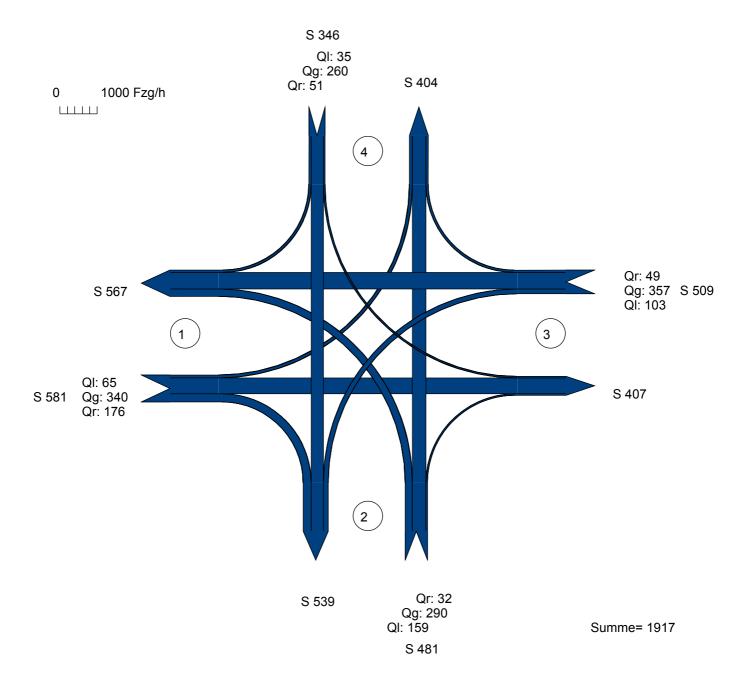
Zufahrt	Fußgänger- bzw. Rad- verkehrs- strom	maßgebende Hauptströme (Tabelle S5-9) q _{p,i} [Fz/h]	mittl. Wartezeit (Bild S5-29 mit Sp.41) t _{w,i} [s]	Summe der mittl. Wartezeit Σt _{w,i} [s]	Qualitätsstufe (Tabelle S5-1 mit Sp.43 QSV	
		41	42	43	44	
	F1	392				
	F2	416		0 (keine Fussg.)		
Α	F23					
	R11-1			0 (kein Radf.)		
	R11-2			o (kein kaui.)		
	F23					
	F3	0		0 (keine Fussg.)		
В	F4	267		o (keille russy.)		
	F45					
	R2			0 (kein Radf.)		
	F45					
	F5			siehe	oben	
С	F6			1		
	R5-1					
	R5-2					
			erreichbare Qualitäts	stufe QSV Fg/Rad,ges		

KNOBEL Version 7.1.3

IPW INGENIEURPLANUNG Wallenhorst

Verkehrsfluss-Diagramm

Datei : PRA94C~1.AMP

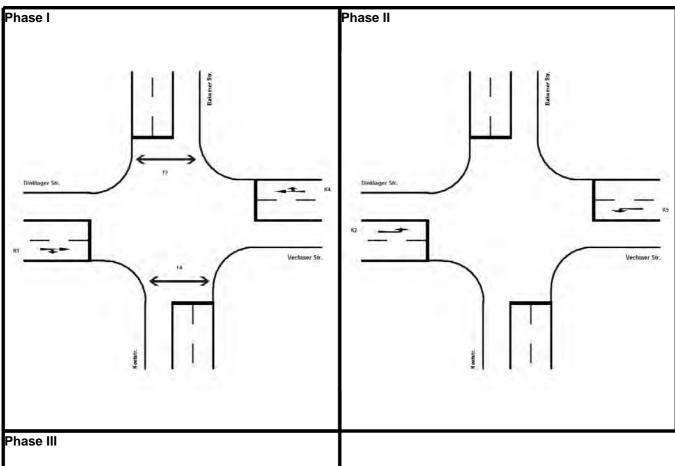

Projekt: VUS Famila in Lohne (216213)

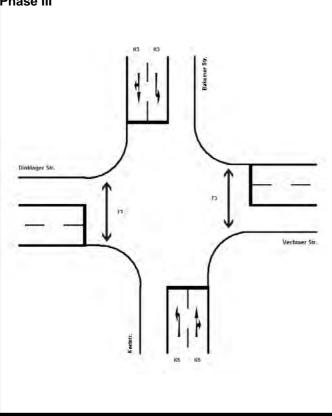
Knoten: KP 01 Dinklager Str./Vechtaer Str./Keetstr./Backumer Str., Prog V1 (Optimiert)

Stunde: Spitzenstunde

Fahrzeuge

Zufahrt 1 : Dinklager Str. Zufahrt 2 : Keetstr. Zufahrt 3 : Vechtaer Str. Zufahrt 4 : Bakumer Str.


Übersicht Phaseneinteilung

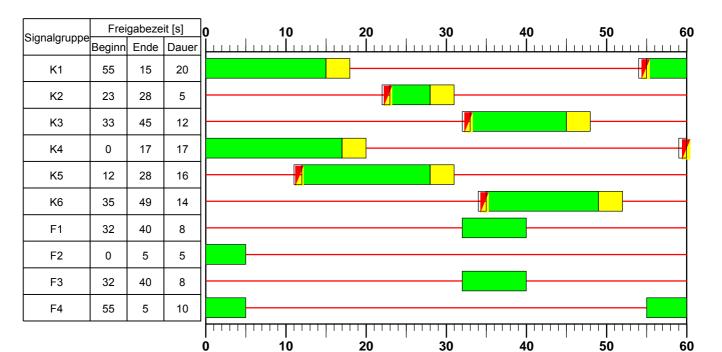

Datei : PRA94C~1.AMP

Projekt : VUS Famila in Lohne (216213) Knoten : KP 01 Dinklager Str./Vechtaer Str./Keetstr./Backumer Str., Prog V1 (Optimiert)

Stunde: Spitzenstunde

Signalzeitenplan

Datei : PRA94C~1.AMP


Projekt: VUS Famila in Lohne (216213)

-=Rot,

=Gelb,

Knoten: KP 01 Dinklager Str./Vechtaer Str./Keetstr./Backumer Str., Prog V1 (Optimiert)

Stunde: Spitzenstunde

=Rot/Gelb,

=Grünpfeil,

=Gelbblinker,

=Dunkel

Prog V1 (Optimiert)

Form	blatt 1				-	mit Lichtsign				
	5	\#\O.F. ''		10010)	A	usgangsdate				
	:Projekt :Knotenpunkt	VUS Famila			notatr /Paaku	mor Str. Dro	Stadt		fahrt)	
	Zeitabschnitt:		-	Jilael Sti./No	ceisii./Dacku	illei Su., Fio	Bearbeiter		iaiiii)	
	t t _U : 60 [s]	op.tzo.iotaii					200.20.00.			
	hrsströme									
	q _{LV}	q _{Lkw+Bus}	q _{LkwK}	q _{Kfz}	q_{SV}	f _{SV}		Anzahl	Misch-	bedingt
Nr.	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[-]			fahrstreifen	_
1	57	0	8			1,185		1	nein	ja
2	311	0	29			1,128		1	ja	nein
3	175	0	1			1,009		1	ja	nein
4	156	0	3			1,028		1	nein	ja
5	290	0	0			1,000		1	ja	nein
6	32	0	0			1,000		1	ja	ja
7	102	0	1			1,015		1	nein	ja
8	335	0	22			1,092		1	ja	nein
9	45	0	4			1,122		1	ja	ja
10	31	0	4			1,171		1	nein	ja
11	259	0	1			1,006		1	ja	nein
12	44	0	7			1,206		1	ja	ja
Kfz-Fahrs	treifen									
Zufahrt	Fahrt-	Nr.	L	b	f _b	R	f_R	s	f _s	L _{LA} /L _{RA}
Zulaliit	richtung	INI.	[m]	[m]	[-]	[m]	[-]	[%]	[-]	[m]
1	rechts	11		>= 3,00	1,000	15,00	1,075	0,0	1,000	
1	gerade	11		>= 3,00	1,000	-	1,000	0,0	1,000	
1	links	12		>= 3,00	1,000	20,00	1,000	0,0	1,000	21
2	rechts	21		>= 3,00	1,000	12,00	1,120	0,0	1,000	28
2	gerade	21		>= 3,00	1,000	-	1,000	0,0	1,000	
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	21
3	rechts	31		>= 3,00	1,000	15,00	1,075	0,0	1,000	24
3	gerade	31		>= 3,00	1,000	-	1,000	0,0	1,000	
3	links	32		>= 3,00	1,000	20,00	1,000	0,0	1,000	23
4	rechts	41		>= 3,00	1,000	15,00	1,075	0,0	1,000	25
4	gerade	41		>= 3,00	1,000	-	1,000	0,0	1,000	
4	links	42		>= 3,00	1,000	20,00	1,000	0,0	1,000	22
Fußgänge	er-/Radfahrer	furten								
	Bez.	q_{Fg}	q_Rad	t _{vor}	1. Furt	2. Furt	3. Furt	4. Furt		
Zufahrt	Signalgr.	[Fg/h]	[Rad/h]	[s]	Länge	Länge	Länge	Länge		
					[m]	[m]	[m]	[m]		
1	F1	100	0		11,10					
2	F4	100	0		11,60					
3	F3	100	0		10,60					
4	F2	100	0		11,00					

Prog V1 (Optimiert)

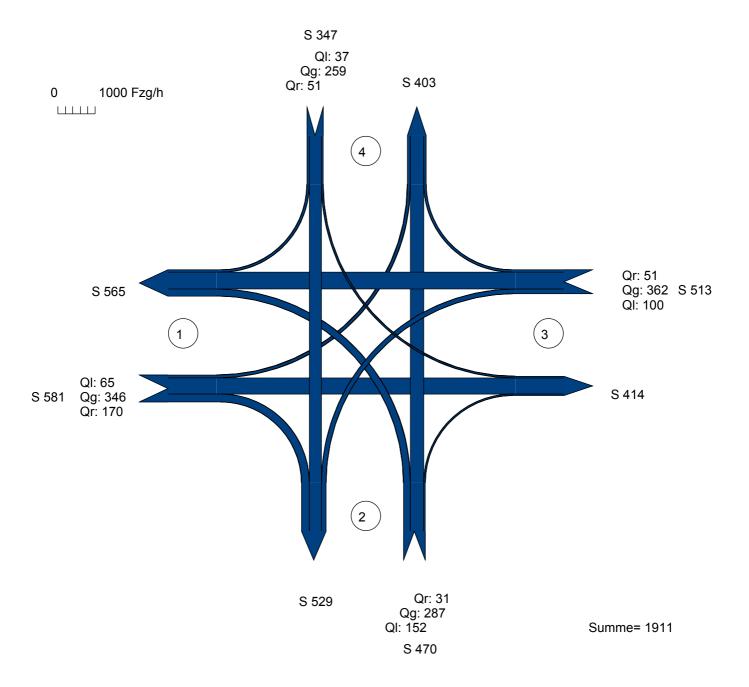
Formblatt 2		Knotenpunkt mit Lichtsignalanlage Berechnung der Grundlagendaten für den Kfz-Verkehr								
	Projekt:	VIIS Famila	a in Lohne (2°		ung der Ordi	ldiagendaten	iui deli itiz-	Stadt:		
	Knotenpunkt:				etstr /Backu	mer Str., Pro	gnose Variar			
	Zeitabschnitt:						J	Bearbeiter:		
	hrsströme -			gen)						
Nr.	Bez.	t _{B,i}	q _{S,i}	t _{F,i}	C _{0,i}	C _{D,i}	C _{PW,i}	C _{GF,i}	C _{LA,i}	C _{RA,i}
	SG	[S]	[Kfz/h]	[s]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]
1	K2	2,132	1689	5	169					
2	K1	2,030	1773	20	621					
3	K1	1,951	1845	20	646	00	004		200	
4	K6	1,851	1945	14	486	89	204		293	
5	K6	1,800	2000 1786	14	500					44
6 7	K6 K5	2,016	1786	14 16	446					41
8	K4	1,826 1,966	1831	17	559 549					
9	K4	2,172	1657	17	497					38
10	K3	2,172	1707	12	370	12	188		200	30
11	K3	1,810	1989	12	431	12	100		200	
12	K3	2,333	1543	12	334					25
Kfz-Verke Nr.	ehrsströme -	q_G	q _{RA}	q _{LA}	n _k	N _{MS,90,j}	C _{K,j}	C _{M,j}	C _j	
Nr.	q _j [Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]		n _k [Kfz]	[Kfz/h]	C _{K,j} [Kfz/h]	[Kfz/h]	C _j [Kfz/h]	
Nr. 11	q _j [Kfz/h] 516	q_G	q _{RA}	q _{LA} [Kfz/h]		[Kfz/h] 17,422		-	[Kfz/h]	
Nr. 11 12	q _j [Kfz/h] 516 65	q _G [Kfz/h]	q _{RA} [Kfz/h] 176	q _{LA}		[Kfz/h] 17,422 3,360		[Kfz/h] 629	-	
Nr. 11 12 21	q _j [Kfz/h] 516 65 322	q _G [Kfz/h]	q _{RA} [Kfz/h]	q _{LA} [Kfz/h]		[Kfz/h] 17,422 3,360 10,273		[Kfz/h]	[Kfz/h]	
Nr. 11 12 21 22	q _j [Kfz/h] 516 65 322 159	q _G [Kfz/h] 340 290	q _{RA} [Kfz/h] 176	q _{LA} [Kfz/h]		[Kfz/h] 17,422 3,360 10,273 6,190		[Kfz/h] 629 489	[Kfz/h]	
Nr. 11 12 21 22 31	q _j [Kfz/h] 516 65 322 159 406	q _G [Kfz/h]	q _{RA} [Kfz/h] 176	q _{LA} [Kfz/h] 65		[Kfz/h] 17,422 3,360 10,273 6,190 13,923		[Kfz/h] 629	[Kfz/h] 169 293	
Nr. 11 12 21 22 31 32	q _j [Kfz/h] 516 65 322 159 406	q _G [Kfz/h] 340 290	q _{RA} [Kfz/h] 176 32	q _{LA} [Kfz/h]		[Kfz/h] 17,422 3,360 10,273 6,190 13,923 3,444		[Kfz/h] 629 489 521	[Kfz/h]	
Nr. 11 12 21 22 31 32 41	q _j [Kfz/h] 516 65 322 159 406 103 311	q _G [Kfz/h] 340 290	q _{RA} [Kfz/h] 176	q _{LA} [Kfz/h] 65 159		[Kfz/h] 17,422 3,360 10,273 6,190 13,923 3,444 12,870		[Kfz/h] 629 489	[Kfz/h] 169 293 559	
Nr. 11 12 21 22 31 32	q _j [Kfz/h] 516 65 322 159 406	q _G [Kfz/h] 340 290	q _{RA} [Kfz/h] 176 32	q _{LA} [Kfz/h] 65		[Kfz/h] 17,422 3,360 10,273 6,190 13,923 3,444		[Kfz/h] 629 489 521	[Kfz/h] 169 293	
Nr. 11 12 21 22 31 32 41	q _j [Kfz/h] 516 65 322 159 406 103 311	q _G [Kfz/h] 340 290	q _{RA} [Kfz/h] 176 32	q _{LA} [Kfz/h] 65 159		[Kfz/h] 17,422 3,360 10,273 6,190 13,923 3,444 12,870		[Kfz/h] 629 489 521	[Kfz/h] 169 293 559	
Nr. 11 12 21 22 31 32 41	q _j [Kfz/h] 516 65 322 159 406 103 311	q _G [Kfz/h] 340 290	q _{RA} [Kfz/h] 176 32	q _{LA} [Kfz/h] 65 159		[Kfz/h] 17,422 3,360 10,273 6,190 13,923 3,444 12,870		[Kfz/h] 629 489 521	[Kfz/h] 169 293 559	
Nr. 11 12 21 22 31 32 41	q _j [Kfz/h] 516 65 322 159 406 103 311	q _G [Kfz/h] 340 290	q _{RA} [Kfz/h] 176 32	q _{LA} [Kfz/h] 65 159		[Kfz/h] 17,422 3,360 10,273 6,190 13,923 3,444 12,870		[Kfz/h] 629 489 521	[Kfz/h] 169 293 559	
Nr. 11 12 21 22 31 32 41	q _j [Kfz/h] 516 65 322 159 406 103 311	q _G [Kfz/h] 340 290	q _{RA} [Kfz/h] 176 32	q _{LA} [Kfz/h] 65 159		[Kfz/h] 17,422 3,360 10,273 6,190 13,923 3,444 12,870		[Kfz/h] 629 489 521	[Kfz/h] 169 293 559	
Nr. 11 12 21 22 31 32 41	q _j [Kfz/h] 516 65 322 159 406 103 311	q _G [Kfz/h] 340 290	q _{RA} [Kfz/h] 176 32	q _{LA} [Kfz/h] 65 159		[Kfz/h] 17,422 3,360 10,273 6,190 13,923 3,444 12,870		[Kfz/h] 629 489 521	[Kfz/h] 169 293 559	
Nr. 11 12 21 22 31 32 41	q _j [Kfz/h] 516 65 322 159 406 103 311	q _G [Kfz/h] 340 290	q _{RA} [Kfz/h] 176 32	q _{LA} [Kfz/h] 65 159		[Kfz/h] 17,422 3,360 10,273 6,190 13,923 3,444 12,870		[Kfz/h] 629 489 521	[Kfz/h] 169 293 559	
Nr. 11 12 21 22 31 32 41	q _j [Kfz/h] 516 65 322 159 406 103 311	q _G [Kfz/h] 340 290	q _{RA} [Kfz/h] 176 32	q _{LA} [Kfz/h] 65 159		[Kfz/h] 17,422 3,360 10,273 6,190 13,923 3,444 12,870		[Kfz/h] 629 489 521	[Kfz/h] 169 293 559	
Nr. 11 12 21 22 31 32 41	q _j [Kfz/h] 516 65 322 159 406 103 311	q _G [Kfz/h] 340 290	q _{RA} [Kfz/h] 176 32	q _{LA} [Kfz/h] 65 159		[Kfz/h] 17,422 3,360 10,273 6,190 13,923 3,444 12,870		[Kfz/h] 629 489 521	[Kfz/h] 169 293 559	
Nr. 11 12 21 22 31 32 41	q _j [Kfz/h] 516 65 322 159 406 103 311	q _G [Kfz/h] 340 290	q _{RA} [Kfz/h] 176 32	q _{LA} [Kfz/h] 65 159		[Kfz/h] 17,422 3,360 10,273 6,190 13,923 3,444 12,870		[Kfz/h] 629 489 521	[Kfz/h] 169 293 559	
Nr. 11 12 21 22 31 32 41	q _j [Kfz/h] 516 65 322 159 406 103 311	q _G [Kfz/h] 340 290	q _{RA} [Kfz/h] 176 32	q _{LA} [Kfz/h] 65 159		[Kfz/h] 17,422 3,360 10,273 6,190 13,923 3,444 12,870		[Kfz/h] 629 489 521	[Kfz/h] 169 293 559	
Nr. 11 12 21 22 31 32 41	q _j [Kfz/h] 516 65 322 159 406 103 311	q _G [Kfz/h] 340 290	q _{RA} [Kfz/h] 176 32	q _{LA} [Kfz/h] 65 159		[Kfz/h] 17,422 3,360 10,273 6,190 13,923 3,444 12,870		[Kfz/h] 629 489 521	[Kfz/h] 169 293 559	

Prog V1 (Optimiert)

Formblatt 3		Knotenpunkt mit Lichtsignalanlage Berechnung der Verkehrsqualitäten								
		 : <u>VUS Famila</u>						Stadt:_		
		: <u>KP 01 Dinkl</u> : Spitzenstun	-	chtaer Str./Ke	eetstr./Backu	mer Str., Pro	gnose Variar	nte 1 (⊅aAum sf <u>a</u> Bearbeiter:		
Kfz-Verkel	rsströme -	Verkehrsqu	alitäten (fah	rstreifenbez	ogen)					
Nr.	Bez.	Ströme	q _j	x _j	$f_{A,j}$	$N_{GE,j}$	N _{MS,j}	L _{95,j}	t _{W,j}	QSV
INI.	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	K1	2, 3	516	0,820	0,35	3,808	11,649	114	39,6	С
12	K2	1	65	0,385	0,10	0,362	1,376	24	33,0	В
21	K6	5, 6	322	0,658	0,25	1,272	6,097	52	29,7	В
22	K6	4	159	0,543	0,15	0,725	3,176	38	32,5	В
31	K4	8, 9	406	0,779	0,29	2,671	8,882	92	38,1	С
32	K5	7	103	0,184	0,28	0,127	1,425	21	17,1	Α
41	K3	11, 12	311	0,806	0,20	3,128	8,066	80	51,9	D
42	K3	10	35	0,175	0,12	0,119	0,645	14	26,0	В
Gesamt			1917						37,3	
Fußgänge	r- /Radfahre	rfurten		,						
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max} [s]					QSV [-]
1	F1	100	0	1	52					С
2	F4	100	0	1	50					С
3	F3	100	0	1	52					С
4	F2	100	0	1	55					С
								Gesamtbewertung: [

Verkehrsfluss-Diagramm

Datei : PROG-V~2.AMP

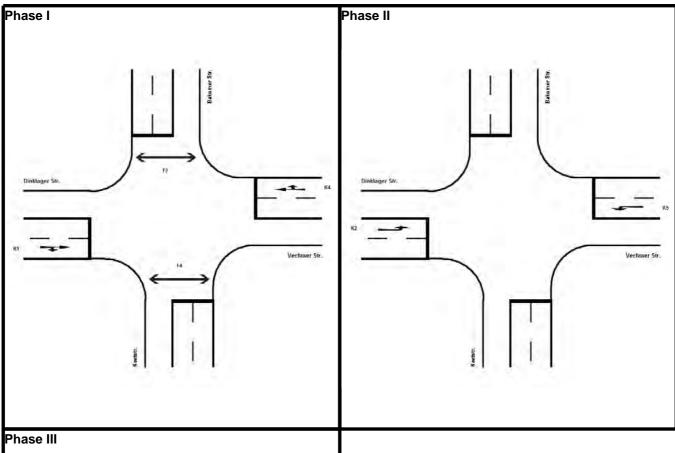

Projekt: VUS Famila in Lohne (216213)

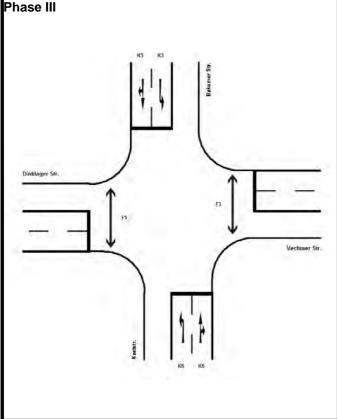
Knoten: KP 01 Dinklager Str./Vechtaer Str./Keetstr./Backumer Str., Prog V2 (Optimiert)

Stunde: Spitzenstunde

Fahrzeuge

Zufahrt 1 : Dinklager Str. Zufahrt 2 : Keetstr. Zufahrt 3 : Vechtaer Str. Zufahrt 4 : Bakumer Str.


Übersicht Phaseneinteilung


Datei : PROG-V~2.AMP

Projekt : VUS Famila in Lohne (216213) Knoten : KP 01 Dinklager Str./Vechtaer Str./Keetstr./Backumer Str., Prog V2 (Optimiert)

Stunde: Spitzenstunde

Datei : PROG-V~2.AMP

Projekt: VUS Famila in Lohne (216213)

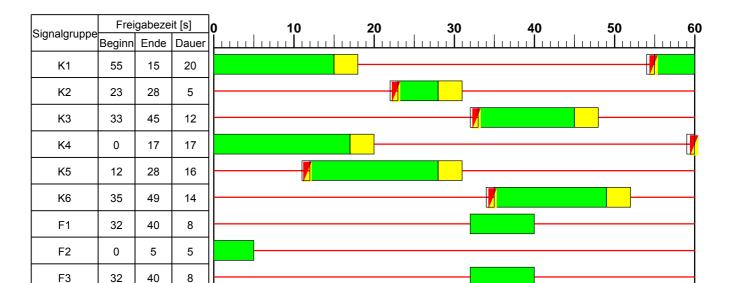
Knoten: KP 01 Dinklager Str./Vechtaer Str./Keetstr./Backumer Str., Prog V2 (Optimiert)

10

Stunde: Spitzenstunde

F4

55


5

-=Rot,

10

0

=Gelb,

20

=Rot/Gelb,

30

=Grünpfeil,

40

50

=Gelbblinker,

60

=Dunkel

Prog V2 (Optimiert)

Form	blatt 1				Knotenpunkt	mit Lichtsign	nalanlage			
1 01111	Diatt 1				A	usgangsdate	n			
	-	VUS Famila					Stadt			
	Knotenpunkt:			chtaer Str./Ke	eetstr./Backu	mer Str., Pro			fahrten)	
	Zeitabschnitt:	Spitzenstun	de				Bearbeiter	: kül		
	t _U : 60 [s]									
Kfz-Verke	hrsströme							I	I	
Nr.	q _{LV}	q _{Lkw+Bus}	q _{LkwK}	q _{Kfz}	q _{SV}	f _{SV}		Anzahl	Misch-	bedingt
	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[-]			fahrstreifen	
1	57	0	8			1,185		1	nein	ja
2	317	0	29			1,126		1	ja	nein
3	169	0	1			1,009		1	ja	nein
4	149	0	3			1,030		1	nein	ja
5	287	0	0			1,000		1	ja	nein
6	31	0	0			1,000		1	ja	ja
7	99	0	1			1,015		1	nein	ja
8	340	0	22			1,091		1	ja	nein
9	47	0	4			1,118		1	ja	ja
10	33	0	4			1,162		1	nein	ja
11	258	0	1			1,006		1	ja	nein
12	44	0	7			1,206		11	ja	ja
Kfz-Fahrs	treifen								T	
Zufahrt	Fahrt-	Nr.	L	b	f _b	R	f_R	S	f _s	L _{LA} /L _{RA}
	richtung		[m]	[m]	[-]	[m]	[-]	[%]	[-]	[m]
1	rechts	11		>= 3,00	1,000	15,00	1,075	0,0	1,000	
1	gerade	11		>= 3,00	1,000	-	1,000	0,0	1,000	
1	links	12		>= 3,00	1,000	20,00	1,000	0,0	1,000	21
2	rechts	21		>= 3,00	1,000	12,00	1,120	0,0	1,000	28
2	gerade	21		>= 3,00	1,000	-	1,000	0,0	1,000	
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	21
3	rechts	31		>= 3,00	1,000	15,00	1,075	0,0	1,000	24
3	gerade	31		>= 3,00	1,000	-	1,000	0,0	1,000	
3	links	32		>= 3,00	1,000	20,00	1,000	0,0	1,000	23
4	rechts	41		>= 3,00	1,000	15,00	1,075	0,0	1,000	25
4	gerade	41		>= 3,00	1,000	-	1,000	0,0	1,000	
4	links	42		>= 3,00	1,000	20,00	1,000	0,0	1,000	22
Fußgänge	er-/Radfahrer	furten	Т	Т	1	Г		I	1	
	Bez.	q_{Fg}	q_Rad	t _{vor}	1. Furt	2. Furt	3. Furt	4. Furt		
Zufahrt	Signalgr.	[Fg/h]	[Rad/h]	[s]	Länge	Länge	Länge	Länge		
					[m]	[m]	[m]	[m]		
1	F1	100	0		11,10					
2	F4	100	0		11,60					
3	F3	100	0		10,60					
4	F2	100	0		11,00					

Prog V2 (Optimiert)

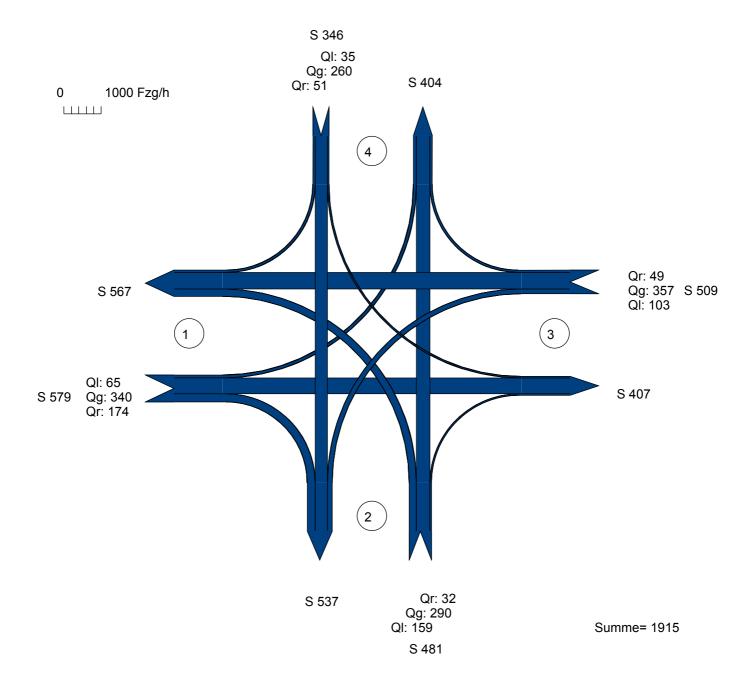
Forn	nblatt 2				Knotenpun	kt mit Lichtsi	gnalanlage			
1 0111	ibiatt Z			Berechn	ung der Grur	ndlagendater	n für den Kfz-	-Verkehr		
	Projekt:	VUS Famila	in Lohne (2°	16213)				Stadt:		
	Knotenpunkt:	KP 01 Dinkl	ager Str./Ved	chtaer Str./Ke	etstr./Backu	mer Str., Pro	gnose Varia	nte 2 102 a :Auns t	<u> 2211/11/16/20.)2016</u>	
	Zeitabschnitt:	Spitzenstun	de					Bearbeiter:	kül	
Kfz-Verke	ehrsströme -	Kapazitäten	(strombezo	gen)						
Nie	Bez.	t _{B,i}	$q_{S,i}$	t _{F,i}	C _{0,i}	$C_{D,i}$	$C_{PW,i}$	$C_{GF,i}$	$C_{LA,i}$	$C_{RA,i}$
Nr.	SG	[s]	[Kfz/h]	[s]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]
1	K2	2,132	1689	5	169					
2	K1	2,026	1777	20	622					
3	K1	1,952	1844	20	645					
4	K6	1,853	1943	14	486	89	204		293	
5	K6	1,800	2000	14	500					
6	K6	2,016	1786	14	446					41
7	K5	1,827	1970	16	558					
8	K4	1,964	1833	17	550					
9	K4	2,163	1664	17	499					38
10	K3	2,092	1721	12	373	12	189		201	
11	K3	1,810	1989	12	431					
12	K3	2,333	1543	12	334					25
	1.0									
Kfz-Vorka	ehrsströme -	Kanazitäten	(fahrstroifo	nhezogen)						
KIZ-VCIK		_			n	N	C _{K,j}	C _{M,j}	C _j	
Nr.	q _j [Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]	q _{LA} [Kfz/h]	n _k [Kfz]	N _{MS,90,j} [Kfz/h]	(Kfz/h	C _{M,j} [Kfz/h]	(Kfz/h	
11	516	346	170	[KIZ/II]	[KIZ]	17,423	[KIZ/II]	629	[KIZ/II]	
12	65	340	170	65		3,360		029	169	
21	318	287	31	0.5		10,091		490	109	
22	152	201	31	152		5,910		490	202	
31	413	362	F.1	152				522	293	
		302	51	100		14,416		522	550	
32	100	0=0		100		3,368		222	558	
41	310	259	51			12,767		386		
42	37			37		2,081			201	

Prog V2 (Optimiert)

Formb	olatt 3					t mit Lichtsig der Verkehr				
	(notenpunk	:: VUS Famila t: KP 01 Dinkl	ager Str./Ved						2211rtte22.)2016	
		t: Spitzenstun · Verkehrsqu		rstreifenhez	ogen)			Bearbeiter:	kül	
	Bez.	Ströme	q _j	x _j	f _{A,j}	$N_{GE,j}$	N _{MS,j}	L _{95,j}	$t_{W,j}$	QSV
Nr.	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	K1	2, 3	516	0,820	0,35	3,808	11,650	114	39,6	С
12	K2	1	65	0,385	0,10	0,362	1,376	24	33,0	В
21	K6	5, 6	318	0,649	0,25	1,211	5,962	51	29,1	В
22	K6	4	152	0,519	0,15	0,653	2,987	37	31,5	В
31	K4	8, 9	413	0,791	0,29	2,921	9,267	95	39,8	С
32	K5	7	100	0,179	0,28	0,123	1,381	21	17,0	A
41 42	K3 K3	11, 12 10	310 37	0,803 0,184	0,20 0,12	3,068 0,127	7,987 0,683	80 15	51,4 26,2	D B
			-	-, -						
Gesamt			1911						37,5	
Fußgänger	- /Radfahre	erfurten								
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max} [s]					QSV [-]
1	F1	100	0	1	52					С
2	F4	100	0	1	50					С
3	F3	100	0	1	52					С
4	F2	100	0	1	55					С
								Gesamtb	ewertung:	D

Verkehrsfluss-Diagramm

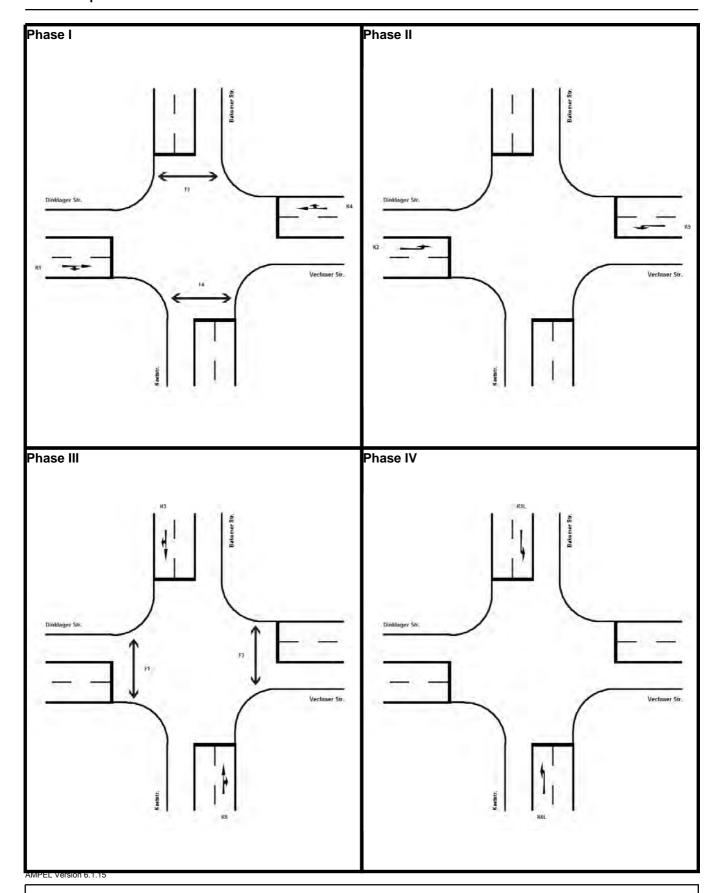
Datei : PREE00~1.amp


Projekt: VUS Famila in Lohne (216213)

Knoten: KP 01 Dinklager Str./Vechtaer Str./Keetstr./Bakumer Str., Prog V1 (Optimiert + LA)

Stunde: Spitzenstunde

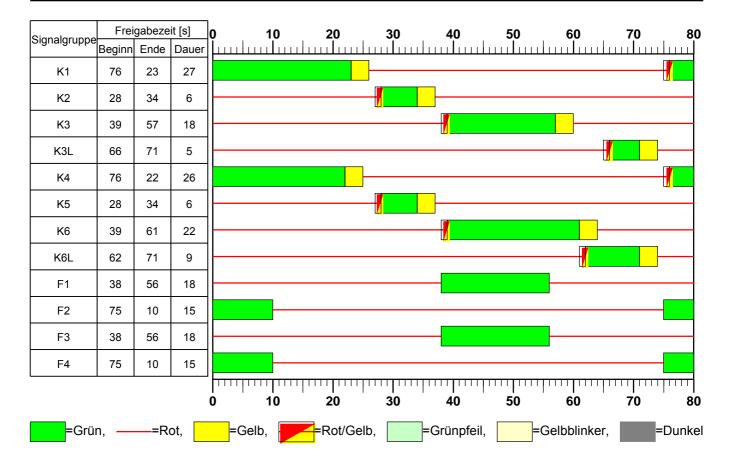
Fahrzeuge


Zufahrt 1 : Dinklager Str. Zufahrt 2 : Keetstr. Zufahrt 3 : Vechtaer Str. Zufahrt 4 : Bakumer Str.

Übersicht Phaseneinteilung

Datei : PREE00~1.amp

Projekt : VUS Famila in Lohne (216213) Knoten : KP 01 Dinklager Str./Vechtaer Str./Keetstr./Bakumer Str., Prog V1 (Optimiert + LA)


Signalzeitenplan

Datei : PREE00~1.amp

Projekt: VUS Famila in Lohne (216213)

Knoten: KP 01 Dinklager Str./Vechtaer Str./Keetstr./Bakumer Str., Prog V1 (Optimiert + LA)

Prog V1 (Optimiert + LA)

_					Knotenpunkt	mit Lichtsign	nalanlage			
Form	blatt 1				Aı	usgangsdate	n			
	Projekt:	VUS Famila	in Lohne (2°	16213)				_ Stadt		
	Knotenpunkt:	KP 01 Dinkl	ager Str./Ved	chtaer Str./Ke	eetstr./Bakun	ner Str., Prog	V1 (Optimi	ert + LDA)ntum	: <u>13.04.2017</u>	
7	Zeitabschnitt:	Spitzenstun	de					Bearbeiter	: kül	
Umlaufzeit	:t _U : 80 [s]									
Kfz-Verke	hrsströme							T	1	T
Nr.	q_{LV}	q _{Lkw+Bus}	q_{LkwK}	q_{Kfz}	q_{SV}	f _{SV}		Anzahl	Misch-	bedingt
	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[-]		Fahrstreifen	fahrstreifen	verträglich
1	57	0	8			1,185		1	nein	nein
2	311	0	29			1,128		1	ja	nein
3	173	0	1			1,009		1	ja	ja
4	156	0	3			1,028		1	nein	nein
5	290	0	0			1,000		1	ja	nein
6	32	0	0			1,000		1	ja	ja
7	102	0	1			1,015		1	nein	nein
8	335	0	22			1,092		1	ja	nein
9	45	0	4			1,122		1	ja	ja
10	31	0	4			1,171		1	nein	nein
11	259	0	1			1,006		1	ja	nein
12	44	0	7			1,206		1	ja	ja
Kfz-Fahrs	treifen				1			I	I	I
Zufahrt	Fahrt-	Nr.	L	b	f _b	R	f_R	s	f _s	L _{LA} /L _{RA}
	richtung		[m]	[m]	[-]	[m]	[-]	[%]	[-]	[m]
1	rechts	11		>= 3,00	1,000	15,00	1,075	0,0	1,000	20
1	gerade	11		>= 3,00	1,000	-	1,000	0,0	1,000	
1	links	12		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	12,00	1,120	0,0	1,000	28
2	gerade	21		>= 3,00	1,000	-	1,000	0,0	1,000	
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	
3	rechts	31		>= 3,00	1,000	15,00	1,075	0,0	1,000	24
3	gerade	31		>= 3,00	1,000	-	1,000	0,0	1,000	
3	links	32		>= 3,00	1,000	20,00	1,000	0,0	1,000	
4	rechts	41		>= 3,00	1,000	15,00	1,075	0,0	1,000	25
4	gerade	41		>= 3,00	1,000	-	1,000	0,0	1,000	
4	links	42		>= 3,00	1,000	20,00	1,000	0,0	1,000	
Fußgänge	r-/Radfahrer			1						
-	Bez.	q _{Fg}	q _{Rad}		1. Furt	2. Furt	3. Furt	4. Furt		
Zufahrt	Signalgr.	[Fg/h]	[Rad/h]		Länge	Länge	Länge	Länge		
	_				[m]	[m]	[m]	[m]		
1	F1	100	0		11,10					
2	F4	100	0		11,60					
3	F3	100	0		10,60					
4	F2	100	0		11,00					

Prog V1 (Optimiert + LA)

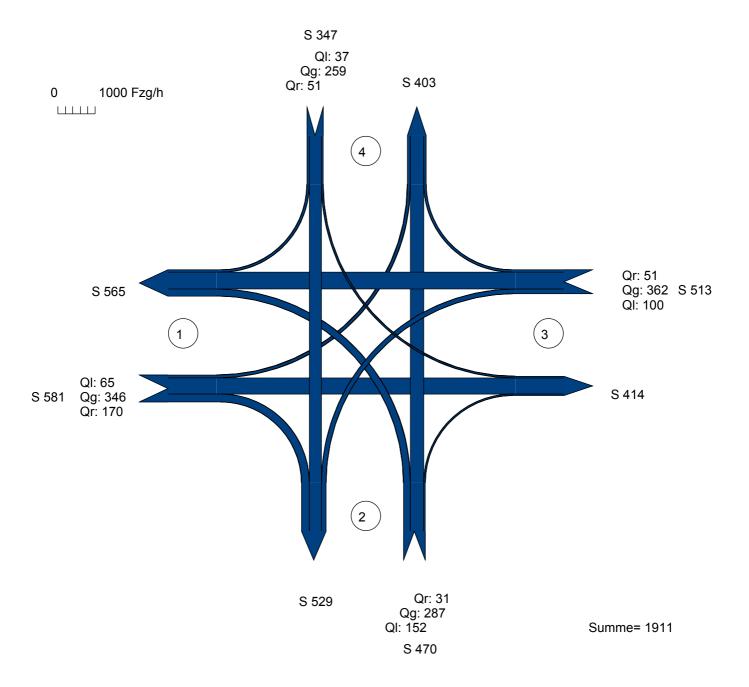
Form	nblatt 2	Knotenpunkt mit Lichtsignalanlage Berechnung der Grundlagendaten für den Kfz-Verkehr									
	Desiald	// I.O. E il -	. i.a. I. a.la. a.a. /0/		ung der Grur	ndiagendate	n tur den Ktz-				
	-	t: <u>VUS Famila</u> t: <u>KP 01 Dink</u> l			otetr /Rakum	or Str. Dro	a V1 (Ontimie	Stadt			
		t: Spitzenstun		Silael Sil./No	celsti./Dakuii	<u>iei 3ii., Fio</u>	g v i (Optillile	Bearbeiter			
		· Kapazitäten		aen)				Bearbeiter	. Kui		
	Bez.	t _{B,i}	q _{S,i}	t _{F,i}	C _{0,i}	$C_{D,i}$	C _{PW,i}	$C_{GF,i}$	C _{LA,i}	$C_{RA,i}$	
Nr.	SG	(s)	[Kfz/h]	(s)	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	
1	K2	2,132	1689	6	148						
2	K1	2,030	1773	27	621						
3	K1	1,952	1844	27	645					549	
4	K6L	1,851	1945	9	243						
5	K6	1,800	2000	22	575						
6	K6	2,016	1786	22	513					42	
7	K5	1,826	1972	6	173						
8	K4	1,966	1831	26	618						
9	K4	2,172	1657	26	559					47	
10	K3L	2,109	1707	5	128						
11	K3	1,810	1989	18	472						
12	K3	2,333	1543	18	366					28	
(fz-Verke	ehrsströme -	· Kapazitäten	(fahrstreife	nbezogen)							
Nr.	Bez. SG	q _j [Kfz/h]	q _G [Kfz/h]	q _{RA} [Kfz/h]	q _{LA} [Kfz/h]	n _k [Kfz]	N _{MS,90,j} [Kfz/h]	C _{K,j} [Kfz/h]	C _{M,j} [Kfz/h]	C _j [Kfz/h]	
11	K1	514	340	174	[111271]	[. (.2]	23,284	[14,2,11]	595	[14,2,11]	
12	K2	65			65		4,115			14	
21	K6	322	290	32			11,497		555		
22	K6L	159			159		8,195			24	
31	K4	406	357	49			14,389		596		
32	K5	103			103		6,085			17	
41	K3	311	260	51			13,145		427		
42	K3L	35			35		2,594			12	
	1	+									

Prog V1 (Optimiert + LA)

latt 3				Knotenpunl	t mit Lichtsig	gnalanlage			
natt 5				Berechnung	der Verkehr	squalitäten			
Projekt:	VUS Famila	in Lohne (2°	16213)				Stadt:_		
		•	chtaer Str./Ke	eetstr./Bakum	er Str., Prog	V1 (Optimie	,		
eitabschnitt:	Spitzenstun	de					Bearbeiter:	kül	
rsströme -	Verkehrsqu	alitäten (fah	rstreifenbez	ogen)					
Bez.	Ströme	q_j	x_j	$f_{A,j}$	$N_{GE,j}$	$N_{MS,j}$	L _{95,j}	$t_{W,j}$	QSV
SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
K1	2, 3	514	0,864	0,33	5,728	16,429	152	59,7	D
K2	1	65	0,439	0,09	0,458	1,828	29	45,8	С
K6	5, 6	322	0,580	0,28	0,869	7,017	69	30,4	В
K6L	4	159	0,654	0,12	1,210	4,577	51	51,3	D
K4	8, 9	406	0,681	0,33	1,446	9,246	95	31,9	В
K5	7	103	0,595	0,09	0,902	3,105	37	53,9	D
K3	11, 12	311	0,728	0,22	1,872	8,279	82	44,5	С
K3L	10	35	0,273	0,07	0,213	0,948	18	40,9	С
		1915						44,6	
- /Radfahre	rfurten						•	'	
Bez.		q _{Rad}	Anzahl	t _{W.max}					QSV
SG		[Rad/h]	Furten						[-]
F1	100	0	1	62					D
F4	100	0	1	65					D
F3	100	0	1	62					D
F2	100	0	1	65					D
							Gesamth	newertung:	D
	motenpunkt: eitabschnitt: irsströme - Bez. SG K1 K2 K6 K6L K4 K5 K3 K3L -/Radfahre Bez. SG F1 F4 F3	Projekt: VUS Famila Inotenpunkt: KP 01 Dinkl eitabschnitt: Spitzenstun rsströme - Verkehrsqu Bez. Ströme SG K1 2, 3 K2 1 K6 5, 6 K6L 4 K4 8, 9 K5 7 K3 11, 12 K3L 10 - /Radfahrerfurten Bez. q _{Fg} SG [Fg/h] F1 100 F4 100 F3 100	Projekt: VUS Famila in Lohne (2: Inotenpunkt: KP 01 Dinklager Str./Ved eitabschnitt: Spitzenstunde Projekt: VUS Famila in Lohne (2: Inotenpunkt: KP 01 Dinklager Str./Ved eitabschnitt: Spitzenstunde Projekt: VUS Famila in Lohne (2: Inotenpunkt: KP 01 Dinklager Str./Ved eitabschnitt: Spitzenstunde Projekt: VUS Famila in Lohne (2: Inotenpunkt: KP 01 Dinklager Str./Ved eitabschnitt: Spitzenstunde Rez. Ströme	Projekt: VUS Famila in Lohne (216213) Inotenpunkt: KP 01 Dinklager Str./Vechtaer Str./Keeitabschnitt: Spitzenstunde Instrome - Verkehrsqualitäten (fahrstreifenbez Str./Keeitabschnitt: Spitzenstunde) Bez. Ströme q _j x _j SG [Kfz/h] [-] K1 2, 3 514 0,864 K2 1 65 0,439 K6 5, 6 322 0,580 K6L 4 159 0,654 K4 8, 9 406 0,681 K5 7 103 0,595 K3 11, 12 311 0,728 K3L 10 35 0,273 - /Radfahrerfurten Bez. q _{Fg} q _{Rad} Anzahl SG [Fg/h] [Rad/h] Furten F1 100 0 1 F4 100 0 1 F4 100 0 1	Projekt: VUS Famila in Lohne (216213)		Berechnung der Verkehrsqualitäten Projekt: VUS Famila in Lohne (216213)	Berechnung der Verkehrsqualitäten	

Verkehrsfluss-Diagramm

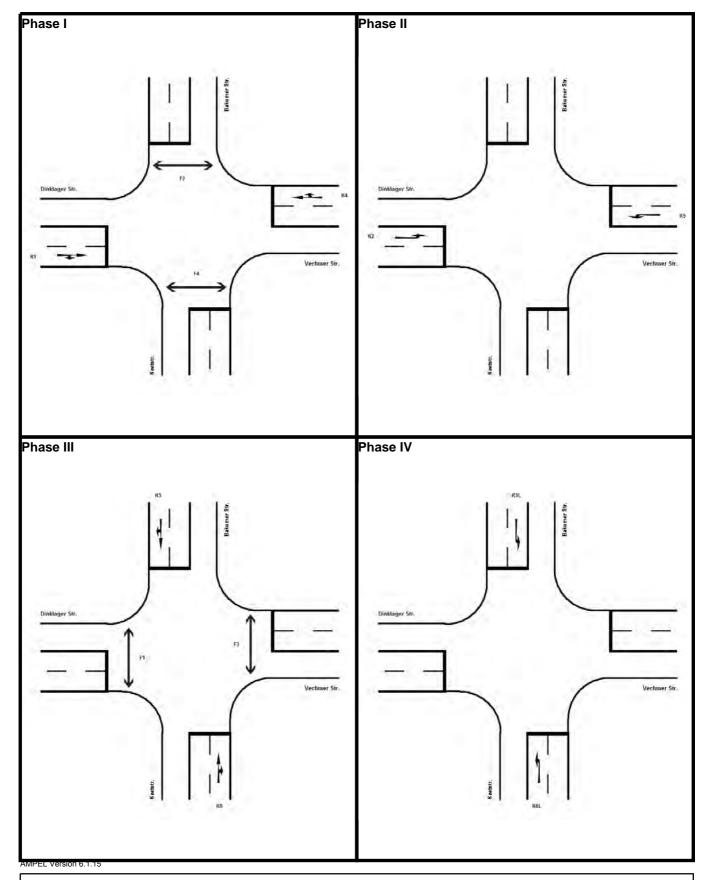
Datei : PR4E86~1.amp


Projekt: VUS Famila in Lohne (216213)

Knoten: KP 01 Dinklager Str./Vechtaer Str./Keetstr./Bakumer Str., Prog V2 (Optimiert + LA)

Stunde: Spitzenstunde

Fahrzeuge


Zufahrt 1 : Dinklager Str. Zufahrt 2 : Keetstr. Zufahrt 3 : Vechtaer Str. Zufahrt 4 : Bakumer Str.

Übersicht Phaseneinteilung

Datei : PR4E86~1.amp

Projekt : VUS Famila in Lohne (216213) Knoten : KP 01 Dinklager Str./Vechtaer Str./Keetstr./Bakumer Str., Prog V2 (Optimiert + LA)

Signalzeitenplan

Datei : PR4E86~1.amp

Projekt: VUS Famila in Lohne (216213)

Knoten: KP 01 Dinklager Str./Vechtaer Str./Keetstr./Bakumer Str., Prog V2 (Optimiert + LA)

Prog V2 (Optimiert + LA)

Earm	blatt 1	-			Knotenpunkt	mit Lichtsign	nalanlage			
Form	וי זזגועו				A	usgangsdate	n			
	Projekt:	VUS Famila	in Lohne (2°	16213)				Stadt		
	Knotenpunkt:	KP 01 Dinkl	ager Str./Ved	chtaer Str./Ke	eetstr./Bakun	ner Str., Prog	V2 (Optimi	ert+L DAa)tum	: 13.04.2017	
;	Zeitabschnitt:	Spitzenstun	de					Bearbeiter	: kül	
Umlaufzeit	t t _U : 80 [s]									
Kfz-Verke	hrsströme							T	1	Т
Nr.	q_{LV}	q _{Lkw+Bus}	q_LkwK	q_{Kfz}	q_{SV}	f_{SV}		Anzahl	Misch-	bedingt
	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[-]		Fahrstreifen	fahrstreifen	verträglich
1	57	0	8			1,185		1	nein	nein
2	317	0	29			1,126		1	ja	nein
3	169	0	1			1,009		1	ja	ja
4	149	0	3			1,030		1	nein	nein
5	287	0	0			1,000		1	ja	nein
6	31	0	0			1,000		1	ja	ja
7	99	0	1			1,015		1	nein	nein
8	340	0	22			1,091		1	ja	nein
9	47	0	4			1,118		1	ja	ja
10	33	0	4			1,162		1	nein	nein
11	258	0	1			1,006		1	ja	nein
12	44	0	7			1,206		1	ja	ja
Kfz-Fahrs	treifen				1			1	ı	ı
Zufahrt	Fahrt-	Nr.	L	b	f _b	R	f_R	s	f _s	L _{LA} /L _{RA}
	richtung		[m]	[m]	[-]	[m]	[-]	[%]	[-]	[m]
1	rechts	11		>= 3,00	1,000	15,00	1,075	0,0	1,000	20
1	gerade	11		>= 3,00	1,000	-	1,000	0,0	1,000	
1	links	12		>= 3,00	1,000	20,00	1,000	0,0	1,000	
2	rechts	21		>= 3,00	1,000	12,00	1,120	0,0	1,000	28
2	gerade	21		>= 3,00	1,000	-	1,000	0,0	1,000	
2	links	22		>= 3,00	1,000	20,00	1,000	0,0	1,000	
3	rechts	31		>= 3,00	1,000	15,00	1,075	0,0	1,000	24
3	gerade	31		>= 3,00	1,000	-	1,000	0,0	1,000	
3	links	32		>= 3,00	1,000	20,00	1,000	0,0	1,000	
4	rechts	41		>= 3,00	1,000	15,00	1,075	0,0	1,000	25
4	gerade	41		>= 3,00	1,000	-	1,000	0,0	1,000	
4	links	42		>= 3,00	1,000	20,00	1,000	0,0	1,000	
Fußgänge	er-/Radfahrer		П					Ι.	I	
	Bez.	q _{Fg}	q _{Rad}		1. Furt	2. Furt	3. Furt	4. Furt		
Zufahrt	Signalgr.	[Fg/h]	[Rad/h]		Länge	Länge	Länge	Länge		
					[m]	[m]	[m]	[m]		
1	F1	100	0		11,10					
2	F4	100	0		11,60					
3	F3	100	0		10,60					
4	F2	100	0		11,00					

Prog V2 (Optimiert + LA)

notenpunkt	 : VUS Famila		Knotenpunkt mit Lichtsignalanlage Berechnung der Grundlagendaten für den Kfz-Verkehr									
notenpunkt		in Lohne (21		ung uo. o.u.	lalageridate	ITTOT GOTT TOTAL	Stadt	··				
eitahschnitt	: KP 01 Dinkla			eetstr./Bakum	ner Str., Pro	g V2 (Optimie						
Citabooi ii iitt.	: Spitzenstun	de					Bearbeiter	: kül				
rsströme -	Kapazitäten	(strombezo	gen)	Т								
Bez. SG	t _{B,i} [s]	q _{S,i} [Kfz/h]	t _{F,i} [s]	C _{0,i} [Kfz/h]	C _{D,i} [Kfz/h]	C _{PW,i} [Kfz/h]	C _{GF,i} [Kfz/h]	C _{LA,i} [Kfz/h]	C _{RA,i} [Kfz/h]			
K2	2,132	1689	6	148								
K1	2,026	1777	27	622								
K1	1,952	1844	27	645					549			
K6L	1,853	1943	9	243								
K6	1,800	2000	22	575								
K6	2,016	1786	22	513					420			
K5	1,827	1970	6	172								
K4	1,964	1833	26	619								
K4	2,163	1664	26	562					475			
K3L		1721	5	129								
K3	2,333	1543	18	366					286			
rsströme -	Kapazitäten	(fahrstreife	nbezogen)									
Bez.	q _j	q_G	q_{RA}	q_{LA}	n_k	N _{MS,90,j}	$C_{K,j}$	$C_{M,j}$	C_{j}			
SG	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz]	[Kfz/h]	[Kfz/h]	[Kfz/h]	[Kfz/h]			
K1	516	346	170			23,486		596				
K2	65			65		4,115			148			
K6	318	287	31					555				
				152					243			
		362	51					597				
				100					172			
		259	51					426				
K3L	37			37		2,702			129			
	K2 K1 K1 K6L K6 K6 K5 K4 K4 K3L K3 K3 K3 rsströme - Bez. SG K1 K2	SG [s] K2 2,132 K1 2,026 K1 1,952 K6L 1,853 K6 1,800 K6 2,016 K5 1,827 K4 1,964 K4 2,163 K3L 2,092 K3 1,810 K3 2,333 rsströme - Kapazitäten Bez. q _j SG [Kfz/h] K1 516 K2 65 K6 318 K6L 152 K4 413 K5 100 K3 310	SG [s] [Kfz/h] K2 2,132 1689 K1 2,026 1777 K1 1,952 1844 K6L 1,853 1943 K6 1,800 2000 K6 2,016 1786 K5 1,827 1970 K4 1,964 1833 K4 2,163 1664 K3L 2,092 1721 K3 1,810 1989 K3 2,333 1543 rsströme - Kapazitäten (fahrstreife Bez. q _j q _G SG [Kfz/h] [Kfz/h] K1 516 346 K2 65 K6 K6 318 287 K6L 152 K4 K4 413 362 K5 100 K3 K3 310 259	SG [s] [Kfz/h] [s] K2 2,132 1689 6 K1 2,026 1777 27 K1 1,952 1844 27 K6L 1,853 1943 9 K6 1,800 2000 22 K6 2,016 1786 22 K5 1,827 1970 6 K4 1,964 1833 26 K4 2,163 1664 26 K3L 2,092 1721 5 K3 1,810 1989 18 K3 2,333 1543 18 rsströme - Kapazitäten (fahrstreifenbezogen) Bez. q _j q _G [Kfz/h] K1 516 346 170 K2 65 65 K6 318 287 31 K6L 152 152 K4 413 362 51 K5<	SG [s] [Kfz/h] [s] [Kfz/h] K2 2,132 1689 6 148 K1 2,026 1777 27 622 K1 1,952 1844 27 645 K6L 1,853 1943 9 243 K6 1,800 2000 22 575 K6 2,016 1786 22 513 K5 1,827 1970 6 172 K4 1,964 1833 26 619 K3L 2,163 1664 26 562 K3L 2,092 1721 5 129 K3 1,810 1989 18 472 K3 2,333 1543 18 366 rsströme - Kapazitäten (fahrstreifenbezogen) rsströme - Kapazitäten (fahrstreifenbezogen) K2 65 65 K3 318 287 31 K4 413 <td>SG [s] [Kfz/h] [s] [Kfz/h] [Kfz/h] K2 2,132 1689 6 148 K1 2,026 1777 27 622 K1 1,952 1844 27 645 K6L 1,853 1943 9 243 K6 1,800 2000 22 575 K6 2,016 1786 22 513 K5 1,827 1970 6 172 K4 1,964 1833 26 619 K4 2,163 1664 26 562 K3L 2,092 1721 5 129 K3 1,810 1989 18 472 K3 2,333 1543 18 366 rsströme - Kapazitäten (fahrstreifenbezogen) Bez. q_j q_G q_{RA} q_{LA} n_k K1 516 346 170 (Kfz/h) [Kfz/h]</td> <td>SG [s] [Kfz/h] [s] [Kfz/h] [Kfz/h] [Kfz/h] K2 2,132 1689 6 148 K1 2,026 1777 27 622 K1 1,952 1844 27 645 K6L 1,853 1943 9 243 K6 1,800 2000 22 575 K6 2,016 1786 22 513 K5 1,827 1970 6 172 K4 1,964 1833 26 619 K4 2,163 1664 26 562 K3L 2,092 1721 5 129 K3 1,810 1989 18 472 K3 2,333 1543 18 366 rsströme - Kapazitäten (fahrstreifenbezogen) Bez. q_j q_G q_{RA} q_{LA} n_k N_{MS,90,j} [Kfz/h] [Kfz/h] [Kfz/h] [Kfz/h]</td> <td>SG [s] [Kfz/h] [s] [Kfz/h] [Kfz/h]<td>SG [s] [Kfz/h] [s] [Kfz/h] [Kfz/h]</td></td>	SG [s] [Kfz/h] [s] [Kfz/h] [Kfz/h] K2 2,132 1689 6 148 K1 2,026 1777 27 622 K1 1,952 1844 27 645 K6L 1,853 1943 9 243 K6 1,800 2000 22 575 K6 2,016 1786 22 513 K5 1,827 1970 6 172 K4 1,964 1833 26 619 K4 2,163 1664 26 562 K3L 2,092 1721 5 129 K3 1,810 1989 18 472 K3 2,333 1543 18 366 rsströme - Kapazitäten (fahrstreifenbezogen) Bez. q _j q _G q _{RA} q _{LA} n _k K1 516 346 170 (Kfz/h) [Kfz/h]	SG [s] [Kfz/h] [s] [Kfz/h] [Kfz/h] [Kfz/h] K2 2,132 1689 6 148 K1 2,026 1777 27 622 K1 1,952 1844 27 645 K6L 1,853 1943 9 243 K6 1,800 2000 22 575 K6 2,016 1786 22 513 K5 1,827 1970 6 172 K4 1,964 1833 26 619 K4 2,163 1664 26 562 K3L 2,092 1721 5 129 K3 1,810 1989 18 472 K3 2,333 1543 18 366 rsströme - Kapazitäten (fahrstreifenbezogen) Bez. q _j q _G q _{RA} q _{LA} n _k N _{MS,90,j} [Kfz/h] [Kfz/h] [Kfz/h] [Kfz/h]	SG [s] [Kfz/h] [s] [Kfz/h] [Kfz/h] <td>SG [s] [Kfz/h] [s] [Kfz/h] [Kfz/h]</td>	SG [s] [Kfz/h] [s] [Kfz/h] [Kfz/h]			

Prog V2 (Optimiert + LA)

Formi	olatt 3				Knotenpunk	t mit Lichtsig	nalanlage			
	Jiatt 5				Berechnung	der Verkehr	squalitäten			
	Projekt	: VUS Famila	in Lohne (2	16213)				Stadt:_		
ŀ	Knotenpunkt	: KP 01 Dinkl	ager Str./Ved	chtaer Str./Ke	eetstr./Bakum	er Str., Prog	V2 (Optimie	rt + LDA)tum:_	13.04.2017	
Z	Zeitabschnitt	: Spitzenstun	de					Bearbeiter:	kül	
Kfz-Verkel	nrsströme -	Verkehrsqu	alitäten (fah	rstreifenbez	ogen)					
Nr.	Bez.	Ströme	q_j	$\mathbf{x}_{\mathbf{j}}$	$f_{A,j}$	$N_{GE,j}$	$N_{MS,j}$	L _{95,j}	$t_{W,j}$	QSV
INI.	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	K1	2, 3	516	0,866	0,33	5,845	16,596	153	60,4	D
12	K2	1	65	0,439	0,09	0,458	1,828	29	45,8	С
21	K6	5, 6	318	0,573	0,28	0,840	6,898	68	30,1	В
22	K6L	4	152	0,626	0,13	1,053	4,259	48	48,8	С
31	K4	8, 9	413	0,692	0,33	1,535	9,504	97	32,5	В
32	K5	7	100	0,581	0,09	0,847	2,984	36	52,8	D
41	K3	11, 12	310	0,728	0,22	1,865	8,251	82	44,5	С
42	K3L	10	37	0,287	0,07	0,228	1,006	19	41,4	С
Gesamt			1911						44,6	
ußgänge	r- /Radfahre	erfurten					'		<u>'</u>	
	Bez.	q_{Fg}	q _{Rad}	Anzahl	t _{W,max}					QSV
Zufahrt	SG	[Fg/h]	[Rad/h]	Furten	[s]					[-]
1	F1	100	0	1	62					D
2	F4	100	0	1	65					D
3	F3	100	0	1	62					D
4	F2	100	0	1	65					D
								Gesamtb	ewertung:	D